See semifactorial in All languages combined, or Wiktionary
{ "etymology_templates": [ { "args": { "1": "en", "2": "semi-", "3": "factorial" }, "expansion": "semi- + factorial", "name": "compound" } ], "etymology_text": "From semi- + factorial.", "forms": [ { "form": "semifactorials", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "semifactorial (plural semifactorials)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ { "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w" }, { "kind": "other", "name": "Entries with translation boxes", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with entries", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with Catalan translations", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with Portuguese translations", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with Spanish translations", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with Swedish translations", "parents": [], "source": "w" }, { "kind": "topical", "langcode": "en", "name": "Combinatorics", "orig": "en:Combinatorics", "parents": [ "Mathematics", "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" }, { "kind": "topical", "langcode": "en", "name": "Mathematics", "orig": "en:Mathematics", "parents": [ "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" } ], "examples": [ { "ref": "1942 February, Giulio Racah, “Theory of Complex Spectra. I”, in Physical Review, volume 61, numbers 3–4, →DOI, page 188:", "text": "With the symbol n#x21;#x21; we indicate the semifactorial of n, that is the product 1.3.5#x5C;dotsn if n is odd, and the product 2.4.6#x5C;dotsn if n is even.", "type": "quote" }, { "ref": "1994 January, Alan Edelman, Eric Kostlan, Michael Shub, “How many eigenvalues of a random matrix are real?”, in Journal of the American Mathematical Society, volume 7, number 1, →DOI, pages 250–251:", "text": "In the formulas above we use the Euler beta function, a Jacobi polynomial evaluated at three, and also the familiar double factorial (also known as the semifactorial) notation defined by n#x21;#x21;#x3D;#x5C;begin#x7B;cases#x7D;#x5C;displaystyle 1#x5C;times 3#x5C;times 5#x5C;times#x5C;dots#x5C;timesn#x26;#x5C;text#x7B;if#x7D;n#x5C;text#x7B;isodd#x7D;,#x5C;#x5C;#x5B;5pt#x5D;#x5C;displaystyle 2#x5C;times 4#x5C;times 6#x5C;times#x5C;dots#x5C;timesn#x26;#x5C;text#x7B;if#x7D;n#x5C;text#x7B;iseven#x7D;.#x5C;end#x7B;cases#x7D;By convention, 0#x21;#x21;#x3D;(-1)#x21;#x21;#x3D;1.", "type": "quote" }, { "ref": "2009, Keith B. Oldham, Jan C. Myland, Jerome Spanier, An Atlas of Functions, 2nd edition, Springer, →DOI, →ISBN, page 25:", "text": "The double factorial or semifactorial function is defined byn#x21;#x21;#x3D;#x5C;begin#x7B;cases#x7D;#x5C;displaystyle 1#x26;n#x3D;-1,0#x5C;#x5C;#x5B;5pt#x5D;#x5C;displaystylen#x5C;times(n-2)#x5C;times(n-4)#x5C;times#x5C;dots#x5C;times 5#x5C;times 3#x5C;times 1#x26;n#x3D;1,3,5,#x5C;dots#x5C;#x5C;#x5B;5pt#x5D;#x5C;displaystylen#x5C;times(n-2)#x5C;times(n-4)#x5C;times#x5C;dots#x5C;times 6#x5C;times 4#x5C;times 2#x26;n#x3D;2,4,6,#x5C;dots#x5C;end#x7B;cases#x7D;", "type": "quote" } ], "glosses": [ "Synonym of double factorial" ], "id": "en-semifactorial-en-noun-2BUfGM9n", "links": [ [ "mathematics", "mathematics" ], [ "combinatorics", "combinatorics" ], [ "double factorial", "double factorial#English" ] ], "raw_glosses": [ "(mathematics, combinatorics, rare) Synonym of double factorial" ], "synonyms": [ { "tags": [ "synonym", "synonym-of" ], "word": "double factorial" } ], "tags": [ "rare" ], "topics": [ "combinatorics", "mathematics", "sciences" ], "translations": [ { "code": "ca", "lang": "Catalan", "sense": "mathematics", "tags": [ "masculine" ], "word": "semifactorial" }, { "code": "pt", "lang": "Portuguese", "sense": "mathematics", "tags": [ "masculine" ], "word": "semifatorial" }, { "code": "es", "lang": "Spanish", "sense": "mathematics", "tags": [ "masculine" ], "word": "semifactorial" }, { "code": "sv", "lang": "Swedish", "sense": "mathematics", "tags": [ "common-gender" ], "word": "semifakultet" } ] } ], "word": "semifactorial" }
{ "etymology_templates": [ { "args": { "1": "en", "2": "semi-", "3": "factorial" }, "expansion": "semi- + factorial", "name": "compound" } ], "etymology_text": "From semi- + factorial.", "forms": [ { "form": "semifactorials", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "semifactorial (plural semifactorials)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ "English compound terms", "English countable nouns", "English entries with incorrect language header", "English lemmas", "English nouns", "English terms with quotations", "English terms with rare senses", "Entries with translation boxes", "Pages with 1 entry", "Pages with entries", "Terms with Catalan translations", "Terms with Portuguese translations", "Terms with Spanish translations", "Terms with Swedish translations", "en:Combinatorics", "en:Mathematics" ], "examples": [ { "ref": "1942 February, Giulio Racah, “Theory of Complex Spectra. I”, in Physical Review, volume 61, numbers 3–4, →DOI, page 188:", "text": "With the symbol n#x21;#x21; we indicate the semifactorial of n, that is the product 1.3.5#x5C;dotsn if n is odd, and the product 2.4.6#x5C;dotsn if n is even.", "type": "quote" }, { "ref": "1994 January, Alan Edelman, Eric Kostlan, Michael Shub, “How many eigenvalues of a random matrix are real?”, in Journal of the American Mathematical Society, volume 7, number 1, →DOI, pages 250–251:", "text": "In the formulas above we use the Euler beta function, a Jacobi polynomial evaluated at three, and also the familiar double factorial (also known as the semifactorial) notation defined by n#x21;#x21;#x3D;#x5C;begin#x7B;cases#x7D;#x5C;displaystyle 1#x5C;times 3#x5C;times 5#x5C;times#x5C;dots#x5C;timesn#x26;#x5C;text#x7B;if#x7D;n#x5C;text#x7B;isodd#x7D;,#x5C;#x5C;#x5B;5pt#x5D;#x5C;displaystyle 2#x5C;times 4#x5C;times 6#x5C;times#x5C;dots#x5C;timesn#x26;#x5C;text#x7B;if#x7D;n#x5C;text#x7B;iseven#x7D;.#x5C;end#x7B;cases#x7D;By convention, 0#x21;#x21;#x3D;(-1)#x21;#x21;#x3D;1.", "type": "quote" }, { "ref": "2009, Keith B. Oldham, Jan C. Myland, Jerome Spanier, An Atlas of Functions, 2nd edition, Springer, →DOI, →ISBN, page 25:", "text": "The double factorial or semifactorial function is defined byn#x21;#x21;#x3D;#x5C;begin#x7B;cases#x7D;#x5C;displaystyle 1#x26;n#x3D;-1,0#x5C;#x5C;#x5B;5pt#x5D;#x5C;displaystylen#x5C;times(n-2)#x5C;times(n-4)#x5C;times#x5C;dots#x5C;times 5#x5C;times 3#x5C;times 1#x26;n#x3D;1,3,5,#x5C;dots#x5C;#x5C;#x5B;5pt#x5D;#x5C;displaystylen#x5C;times(n-2)#x5C;times(n-4)#x5C;times#x5C;dots#x5C;times 6#x5C;times 4#x5C;times 2#x26;n#x3D;2,4,6,#x5C;dots#x5C;end#x7B;cases#x7D;", "type": "quote" } ], "glosses": [ "Synonym of double factorial" ], "links": [ [ "mathematics", "mathematics" ], [ "combinatorics", "combinatorics" ], [ "double factorial", "double factorial#English" ] ], "raw_glosses": [ "(mathematics, combinatorics, rare) Synonym of double factorial" ], "synonyms": [ { "tags": [ "synonym", "synonym-of" ], "word": "double factorial" } ], "tags": [ "rare" ], "topics": [ "combinatorics", "mathematics", "sciences" ] } ], "translations": [ { "code": "ca", "lang": "Catalan", "sense": "mathematics", "tags": [ "masculine" ], "word": "semifactorial" }, { "code": "pt", "lang": "Portuguese", "sense": "mathematics", "tags": [ "masculine" ], "word": "semifatorial" }, { "code": "es", "lang": "Spanish", "sense": "mathematics", "tags": [ "masculine" ], "word": "semifactorial" }, { "code": "sv", "lang": "Swedish", "sense": "mathematics", "tags": [ "common-gender" ], "word": "semifakultet" } ], "word": "semifactorial" }
Download raw JSONL data for semifactorial meaning in English (3.5kB)
This page is a part of the kaikki.org machine-readable English dictionary. This dictionary is based on structured data extracted on 2024-11-06 from the enwiktionary dump dated 2024-10-02 using wiktextract (fbeafe8 and 7f03c9b). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.