See double factorial in All languages combined, or Wiktionary
{ "etymology_templates": [ { "args": { "1": "en", "2": "double", "3": "factorial" }, "expansion": "double + factorial", "name": "compound" } ], "etymology_text": "From double + factorial.", "forms": [ { "form": "double factorials", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "double factorial (plural double factorials)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ { "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w" }, { "kind": "other", "name": "Entries with translation boxes", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with entries", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with Catalan translations", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with Dutch translations", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with Esperanto translations", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with French translations", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with German translations", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with Portuguese translations", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with Spanish translations", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with Thai translations", "parents": [], "source": "w" }, { "kind": "topical", "langcode": "en", "name": "Combinatorics", "orig": "en:Combinatorics", "parents": [ "Mathematics", "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" }, { "kind": "topical", "langcode": "en", "name": "Mathematics", "orig": "en:Mathematics", "parents": [ "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" } ], "examples": [ { "ref": "1902, Arthur Schuster, “On some Definite Integrals and a New Method of reducing a Function of Spherical Co-ordinates to a Series of Spherical Harmonics”, in Proceedings of the Royal Society of London, volume 71, →DOI, →JSTOR, page 99:", "text": "The symbolical representation of the results of this paper is much facilitated by the introduction of a separate symbol for the product of alternate factors, n#x5C;cdotn-2#x5C;cdotn-4#x5C;cdots 1, if n be odd, or n#x5C;cdotn-2#x5C;cdots 2 if n be odd^([sic – meaning even]). I propose to write n#x21;#x21; for such products, and if a name be required for the product to call it the \"alternate factorial\" or the \"double factorial.\" Full advantage of the new symbol is only gained by extending its meaning to the negative values of n. Its complete definition may then be included in the equationsn#x21;#x21;#x3D;n(n-2)#x21;#x21;,#x5C;quad 1#x21;#x21;#x3D;1,#x5C;quad 2#x21;#x21;#x3D;2.", "type": "quote" }, { "ref": "1948 September, B. E. Meserve, “Double Factorials”, in The American Mathematical Monthly, volume 55, number 7, →DOI, →JSTOR, page 425:", "text": "The double factorial notation #x5C;begin#x7B;align#x7D;(2n)#x21;#x21;#x26;#x3D;2#x5C;cdot 4#x5C;cdot 6#x5C;cdots(2n-2)(2n)#x3D;2#x7B;n#x7D;n#x21;#x5C;#x5C;(2n#x2B;1)#x21;#x21;#x26;#x3D;1#x5C;cdot 3#x5C;cdot 5#x5C;cdots(2n-1)(2n#x2B;1)#x3D;#x5C;frac#x7B;(2n#x2B;1)#x21;#x7D;#x7B;2#x7B;n#x7D;n#x21;#x7D;#x5C;end#x7B;align#x7D;may be considered as a generalization of n#x21;#x3D;1#x5C;cdot 2#x5C;cdot 3#x5C;cdotsn.", "type": "quote" }, { "ref": "1958–1959, Kenneth W. Ford, E. J. Konopinski, “Evaluation of Slater integrals with harmonic oscillator wave functions”, in Nuclear Physics, volume 9, number 2, →DOI, page 219:", "text": "We prefer now to write the expansion in a slightly different way in order to exhibit more clearly the symmetry properties of the expansion coefficients:f#x5F;k(m,m')#x3D;(#x5C;tfrac#x7B;1#x7D;#x7B;2#x7D;#x5C;pi)#x5C;tfrac#x7B;1#x7D;#x7B;2#x7D;2#x7B;-2#x5C;bar#x7B;m#x7D;-3#x7D;#x5C;sum#x5F;#x7B;#x5C;sigma#x7D;(2#x5C;bar#x7B;m#x7D;-2#x5C;sigma#x2B;1)#x21;#x21;#x5C;,T#x5F;k#x7B;#x5C;,2#x5C;sigma#x7D;(m,m')J#x5F;#x7B;2#x5C;sigma#x7D;,where, as above, #x5C;bar#x7B;m#x7D; is the average of m and m', #x5C;bar#x7B;m#x7D;#x3D;#x5C;tfrac#x7B;1#x7D;#x7B;2#x7D;(m#x2B;m'), and the double factorial notation is used, (2n#x2B;1)#x21;#x21;#x3D;1#x5C;cdot 3#x5C;cdot 5#x5C;cdots(2n#x2B;1).", "type": "quote" }, { "ref": "2008 April, Adriana Pálffy, Jörg Evers, Christoph H. Keitel, “Electric-dipole-forbidden nuclear transitions driven by super-intense laser fields”, in Physical Review C, volume 77, number 4, →DOI, page 044602-3:", "text": "The symbol #x21;#x21; in Eq. (9) denotes the double factorial given by n#x21;#x21;#x3D;n(n-2)(n-4)#x5C;dots#x5C;kappa#x5F;n, where #x5C;kappa#x5F;n is 1 for odd n and 2 for even n.", "type": "quote" }, { "ref": "2012 June, Henry Gould, Jocelyn Quaintance, “Double Fun with Double Factorials”, in Mathematics Magazine, volume 85, number 3, →DOI, pages 177–178:", "text": "Double factorials can also be defined recursively. Just as we can define the ordinary factorial by n#x21;#x3D;n#x5C;cdot(n-1)#x21; for n#x5C;geq 1 with 0#x21;#x3D;1, we can define the double factorial byn#x21;#x21;#x3D;n#x5C;cdot(n-2)#x21;#x21;for n#x5C;geq 2 with initial values 0#x21;#x21;#x3D;1#x21;#x21;#x3D;1. With our convention that (-1)#x21;#x21;#x3D;1, the recursion is valid for all positive integers n.", "type": "quote" } ], "glosses": [ "For an odd integer, the result of multiplying all the odd integers from 1 to the given number; or for an even integer, the result of multiplying all the even integers from 2 to the given number; symbolised by a double exclamation mark (!!). For example, 9!! = 1 × 3 × 5 × 7 × 9 = 945." ], "id": "en-double_factorial-en-noun-lEFnAqxz", "links": [ [ "mathematics", "mathematics" ], [ "combinatorics", "combinatorics" ], [ "!!", "!!" ] ], "raw_glosses": [ "(mathematics, combinatorics) For an odd integer, the result of multiplying all the odd integers from 1 to the given number; or for an even integer, the result of multiplying all the even integers from 2 to the given number; symbolised by a double exclamation mark (!!). For example, 9!! = 1 × 3 × 5 × 7 × 9 = 945." ], "synonyms": [ { "tags": [ "rare" ], "word": "semifactorial" } ], "topics": [ "combinatorics", "mathematics", "sciences" ], "translations": [ { "code": "ca", "lang": "Catalan", "sense": "mathematics", "tags": [ "masculine" ], "word": "doble factorial" }, { "code": "nl", "lang": "Dutch", "sense": "mathematics", "tags": [ "feminine" ], "word": "dubbelfaculteit" }, { "code": "eo", "lang": "Esperanto", "sense": "mathematics", "word": "duopa faktorialo" }, { "code": "fr", "lang": "French", "sense": "mathematics", "tags": [ "feminine" ], "word": "double factorielle" }, { "code": "de", "lang": "German", "sense": "mathematics", "tags": [ "feminine" ], "word": "Doppelfakultät" }, { "code": "de", "lang": "German", "sense": "mathematics", "tags": [ "feminine" ], "word": "doppelte Fakultät" }, { "code": "pt", "lang": "Portuguese", "sense": "mathematics", "tags": [ "masculine" ], "word": "duplo fatorial" }, { "code": "es", "lang": "Spanish", "sense": "mathematics", "tags": [ "masculine" ], "word": "doble factorial" }, { "code": "th", "lang": "Thai", "sense": "mathematics", "word": "ดับเบิลแฟกทอเรียล" } ], "wikipedia": [ "double factorial" ] } ], "word": "double factorial" }
{ "etymology_templates": [ { "args": { "1": "en", "2": "double", "3": "factorial" }, "expansion": "double + factorial", "name": "compound" } ], "etymology_text": "From double + factorial.", "forms": [ { "form": "double factorials", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "double factorial (plural double factorials)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ "English compound terms", "English countable nouns", "English entries with incorrect language header", "English lemmas", "English multiword terms", "English nouns", "English terms with quotations", "Entries with translation boxes", "Pages with 1 entry", "Pages with entries", "Terms with Catalan translations", "Terms with Dutch translations", "Terms with Esperanto translations", "Terms with French translations", "Terms with German translations", "Terms with Portuguese translations", "Terms with Spanish translations", "Terms with Thai translations", "en:Combinatorics", "en:Mathematics" ], "examples": [ { "ref": "1902, Arthur Schuster, “On some Definite Integrals and a New Method of reducing a Function of Spherical Co-ordinates to a Series of Spherical Harmonics”, in Proceedings of the Royal Society of London, volume 71, →DOI, →JSTOR, page 99:", "text": "The symbolical representation of the results of this paper is much facilitated by the introduction of a separate symbol for the product of alternate factors, n#x5C;cdotn-2#x5C;cdotn-4#x5C;cdots 1, if n be odd, or n#x5C;cdotn-2#x5C;cdots 2 if n be odd^([sic – meaning even]). I propose to write n#x21;#x21; for such products, and if a name be required for the product to call it the \"alternate factorial\" or the \"double factorial.\" Full advantage of the new symbol is only gained by extending its meaning to the negative values of n. Its complete definition may then be included in the equationsn#x21;#x21;#x3D;n(n-2)#x21;#x21;,#x5C;quad 1#x21;#x21;#x3D;1,#x5C;quad 2#x21;#x21;#x3D;2.", "type": "quote" }, { "ref": "1948 September, B. E. Meserve, “Double Factorials”, in The American Mathematical Monthly, volume 55, number 7, →DOI, →JSTOR, page 425:", "text": "The double factorial notation #x5C;begin#x7B;align#x7D;(2n)#x21;#x21;#x26;#x3D;2#x5C;cdot 4#x5C;cdot 6#x5C;cdots(2n-2)(2n)#x3D;2#x7B;n#x7D;n#x21;#x5C;#x5C;(2n#x2B;1)#x21;#x21;#x26;#x3D;1#x5C;cdot 3#x5C;cdot 5#x5C;cdots(2n-1)(2n#x2B;1)#x3D;#x5C;frac#x7B;(2n#x2B;1)#x21;#x7D;#x7B;2#x7B;n#x7D;n#x21;#x7D;#x5C;end#x7B;align#x7D;may be considered as a generalization of n#x21;#x3D;1#x5C;cdot 2#x5C;cdot 3#x5C;cdotsn.", "type": "quote" }, { "ref": "1958–1959, Kenneth W. Ford, E. J. Konopinski, “Evaluation of Slater integrals with harmonic oscillator wave functions”, in Nuclear Physics, volume 9, number 2, →DOI, page 219:", "text": "We prefer now to write the expansion in a slightly different way in order to exhibit more clearly the symmetry properties of the expansion coefficients:f#x5F;k(m,m')#x3D;(#x5C;tfrac#x7B;1#x7D;#x7B;2#x7D;#x5C;pi)#x5C;tfrac#x7B;1#x7D;#x7B;2#x7D;2#x7B;-2#x5C;bar#x7B;m#x7D;-3#x7D;#x5C;sum#x5F;#x7B;#x5C;sigma#x7D;(2#x5C;bar#x7B;m#x7D;-2#x5C;sigma#x2B;1)#x21;#x21;#x5C;,T#x5F;k#x7B;#x5C;,2#x5C;sigma#x7D;(m,m')J#x5F;#x7B;2#x5C;sigma#x7D;,where, as above, #x5C;bar#x7B;m#x7D; is the average of m and m', #x5C;bar#x7B;m#x7D;#x3D;#x5C;tfrac#x7B;1#x7D;#x7B;2#x7D;(m#x2B;m'), and the double factorial notation is used, (2n#x2B;1)#x21;#x21;#x3D;1#x5C;cdot 3#x5C;cdot 5#x5C;cdots(2n#x2B;1).", "type": "quote" }, { "ref": "2008 April, Adriana Pálffy, Jörg Evers, Christoph H. Keitel, “Electric-dipole-forbidden nuclear transitions driven by super-intense laser fields”, in Physical Review C, volume 77, number 4, →DOI, page 044602-3:", "text": "The symbol #x21;#x21; in Eq. (9) denotes the double factorial given by n#x21;#x21;#x3D;n(n-2)(n-4)#x5C;dots#x5C;kappa#x5F;n, where #x5C;kappa#x5F;n is 1 for odd n and 2 for even n.", "type": "quote" }, { "ref": "2012 June, Henry Gould, Jocelyn Quaintance, “Double Fun with Double Factorials”, in Mathematics Magazine, volume 85, number 3, →DOI, pages 177–178:", "text": "Double factorials can also be defined recursively. Just as we can define the ordinary factorial by n#x21;#x3D;n#x5C;cdot(n-1)#x21; for n#x5C;geq 1 with 0#x21;#x3D;1, we can define the double factorial byn#x21;#x21;#x3D;n#x5C;cdot(n-2)#x21;#x21;for n#x5C;geq 2 with initial values 0#x21;#x21;#x3D;1#x21;#x21;#x3D;1. With our convention that (-1)#x21;#x21;#x3D;1, the recursion is valid for all positive integers n.", "type": "quote" } ], "glosses": [ "For an odd integer, the result of multiplying all the odd integers from 1 to the given number; or for an even integer, the result of multiplying all the even integers from 2 to the given number; symbolised by a double exclamation mark (!!). For example, 9!! = 1 × 3 × 5 × 7 × 9 = 945." ], "links": [ [ "mathematics", "mathematics" ], [ "combinatorics", "combinatorics" ], [ "!!", "!!" ] ], "raw_glosses": [ "(mathematics, combinatorics) For an odd integer, the result of multiplying all the odd integers from 1 to the given number; or for an even integer, the result of multiplying all the even integers from 2 to the given number; symbolised by a double exclamation mark (!!). For example, 9!! = 1 × 3 × 5 × 7 × 9 = 945." ], "synonyms": [ { "tags": [ "rare" ], "word": "semifactorial" } ], "topics": [ "combinatorics", "mathematics", "sciences" ], "wikipedia": [ "double factorial" ] } ], "translations": [ { "code": "ca", "lang": "Catalan", "sense": "mathematics", "tags": [ "masculine" ], "word": "doble factorial" }, { "code": "nl", "lang": "Dutch", "sense": "mathematics", "tags": [ "feminine" ], "word": "dubbelfaculteit" }, { "code": "eo", "lang": "Esperanto", "sense": "mathematics", "word": "duopa faktorialo" }, { "code": "fr", "lang": "French", "sense": "mathematics", "tags": [ "feminine" ], "word": "double factorielle" }, { "code": "de", "lang": "German", "sense": "mathematics", "tags": [ "feminine" ], "word": "Doppelfakultät" }, { "code": "de", "lang": "German", "sense": "mathematics", "tags": [ "feminine" ], "word": "doppelte Fakultät" }, { "code": "pt", "lang": "Portuguese", "sense": "mathematics", "tags": [ "masculine" ], "word": "duplo fatorial" }, { "code": "es", "lang": "Spanish", "sense": "mathematics", "tags": [ "masculine" ], "word": "doble factorial" }, { "code": "th", "lang": "Thai", "sense": "mathematics", "word": "ดับเบิลแฟกทอเรียล" } ], "word": "double factorial" }
Download raw JSONL data for double factorial meaning in English (6.3kB)
This page is a part of the kaikki.org machine-readable English dictionary. This dictionary is based on structured data extracted on 2024-11-06 from the enwiktionary dump dated 2024-10-02 using wiktextract (fbeafe8 and 7f03c9b). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.