See groupoid in All languages combined, or Wiktionary
{
"derived": [
{
"_dis1": "0 0",
"word": "groupoidal"
},
{
"_dis1": "0 0",
"word": "hypergroupoid"
},
{
"_dis1": "0 0",
"word": "Lie groupoid"
},
{
"_dis1": "0 0",
"word": "loopoid"
},
{
"_dis1": "0 0",
"word": "pregroupoid"
},
{
"_dis1": "0 0",
"word": "subgroupoid"
},
{
"_dis1": "0 0",
"word": "zroupoid"
}
],
"etymology_templates": [
{
"args": {
"1": "en",
"2": "group",
"3": "oid"
},
"expansion": "group + -oid",
"name": "suffix"
}
],
"etymology_text": "From group + -oid.",
"forms": [
{
"form": "groupoids",
"tags": [
"plural"
]
}
],
"head_templates": [
{
"args": {},
"expansion": "groupoid (plural groupoids)",
"name": "en-noun"
}
],
"lang": "English",
"lang_code": "en",
"pos": "noun",
"senses": [
{
"categories": [
{
"kind": "other",
"langcode": "en",
"name": "Algebra",
"orig": "en:Algebra",
"parents": [],
"source": "w"
}
],
"glosses": [
"A magma: a set with a total binary operation."
],
"id": "en-groupoid-en-noun-xpQoDb8g",
"links": [
[
"algebra",
"algebra"
],
[
"magma",
"magma"
],
[
"set",
"set"
],
[
"total",
"total"
],
[
"binary",
"binary"
],
[
"operation",
"operation"
]
],
"raw_glosses": [
"(algebra) A magma: a set with a total binary operation."
],
"topics": [
"algebra",
"mathematics",
"sciences"
],
"translations": [
{
"_dis1": "83 17",
"alt": "あぐん",
"code": "ja",
"lang": "Japanese",
"lang_code": "ja",
"roman": "agun",
"sense": "a magma",
"word": "亜群"
},
{
"_dis1": "83 17",
"code": "es",
"lang": "Spanish",
"lang_code": "es",
"sense": "a magma",
"tags": [
"masculine"
],
"word": "grupoide"
}
]
},
{
"categories": [
{
"kind": "other",
"langcode": "en",
"name": "Algebra",
"orig": "en:Algebra",
"parents": [],
"source": "w"
},
{
"kind": "other",
"langcode": "en",
"name": "Category theory",
"orig": "en:Category theory",
"parents": [],
"source": "w"
},
{
"_dis": "42 58",
"kind": "other",
"name": "English entries with incorrect language header",
"parents": [],
"source": "w+disamb"
},
{
"_dis": "44 56",
"kind": "other",
"name": "English terms suffixed with -oid",
"parents": [],
"source": "w+disamb"
},
{
"_dis": "44 56",
"kind": "other",
"name": "Entries with translation boxes",
"parents": [],
"source": "w+disamb"
},
{
"_dis": "44 56",
"kind": "other",
"name": "Pages with 1 entry",
"parents": [],
"source": "w+disamb"
},
{
"_dis": "44 56",
"kind": "other",
"name": "Pages with entries",
"parents": [],
"source": "w+disamb"
},
{
"_dis": "44 56",
"kind": "other",
"name": "Terms with French translations",
"parents": [],
"source": "w+disamb"
},
{
"_dis": "44 56",
"kind": "other",
"name": "Terms with German translations",
"parents": [],
"source": "w+disamb"
},
{
"_dis": "44 56",
"kind": "other",
"name": "Terms with Italian translations",
"parents": [],
"source": "w+disamb"
},
{
"_dis": "44 56",
"kind": "other",
"name": "Terms with Japanese translations",
"parents": [],
"source": "w+disamb"
},
{
"_dis": "44 56",
"kind": "other",
"name": "Terms with Portuguese translations",
"parents": [],
"source": "w+disamb"
},
{
"_dis": "44 56",
"kind": "other",
"name": "Terms with Spanish translations",
"parents": [],
"source": "w+disamb"
}
],
"examples": [
{
"bold_text_offsets": [
[
71,
79
],
[
111,
119
]
],
"ref": "2013, Julia Goedecke, Category Theory:",
"text": "[...] A category in which every morphism is an isomorphism is called a groupoid.\n This means that a group is a groupoid with only one object. [...]",
"type": "quotation"
}
],
"glosses": [
"A set with a partial binary operation that is associative and has identities and inverses."
],
"id": "en-groupoid-en-noun-A8dTpAZg",
"links": [
[
"algebra",
"algebra"
],
[
"category theory",
"category theory"
],
[
"partial",
"partial"
],
[
"associative",
"associative"
],
[
"identities",
"identity"
],
[
"inverse",
"inverse"
]
],
"raw_glosses": [
"(algebra and category theory) A set with a partial binary operation that is associative and has identities and inverses."
],
"topics": [
"algebra",
"category-theory",
"computing",
"engineering",
"mathematics",
"natural-sciences",
"physical-sciences",
"sciences"
],
"translations": [
{
"_dis1": "43 57",
"code": "fr",
"lang": "French",
"lang_code": "fr",
"sense": "a set with a partial binary operation...",
"tags": [
"masculine"
],
"word": "groupoïde"
},
{
"_dis1": "43 57",
"code": "de",
"lang": "German",
"lang_code": "de",
"sense": "a set with a partial binary operation...",
"tags": [
"neuter"
],
"word": "Gruppoid"
},
{
"_dis1": "43 57",
"code": "it",
"lang": "Italian",
"lang_code": "it",
"sense": "a set with a partial binary operation...",
"tags": [
"masculine"
],
"word": "gruppoide"
},
{
"_dis1": "43 57",
"code": "pt",
"lang": "Portuguese",
"lang_code": "pt",
"sense": "a set with a partial binary operation...",
"tags": [
"masculine"
],
"word": "grupoide"
},
{
"_dis1": "43 57",
"code": "es",
"lang": "Spanish",
"lang_code": "es",
"sense": "a set with a partial binary operation...",
"tags": [
"masculine"
],
"word": "grupoide"
}
]
}
],
"sounds": [
{
"ipa": "/ˈɡɹuːpɔɪd/"
},
{
"audio": "LL-Q1860 (eng)-Flame, not lame-groupoid.wav",
"mp3_url": "https://upload.wikimedia.org/wikipedia/commons/transcoded/c/c4/LL-Q1860_%28eng%29-Flame%2C_not_lame-groupoid.wav/LL-Q1860_%28eng%29-Flame%2C_not_lame-groupoid.wav.mp3",
"ogg_url": "https://upload.wikimedia.org/wikipedia/commons/transcoded/c/c4/LL-Q1860_%28eng%29-Flame%2C_not_lame-groupoid.wav/LL-Q1860_%28eng%29-Flame%2C_not_lame-groupoid.wav.ogg"
}
],
"word": "groupoid"
}
{
"categories": [
"English countable nouns",
"English entries with incorrect language header",
"English lemmas",
"English nouns",
"English terms suffixed with -oid",
"Entries with translation boxes",
"Pages with 1 entry",
"Pages with entries",
"Terms with French translations",
"Terms with German translations",
"Terms with Italian translations",
"Terms with Japanese translations",
"Terms with Portuguese translations",
"Terms with Spanish translations"
],
"derived": [
{
"word": "groupoidal"
},
{
"word": "hypergroupoid"
},
{
"word": "Lie groupoid"
},
{
"word": "loopoid"
},
{
"word": "pregroupoid"
},
{
"word": "subgroupoid"
},
{
"word": "zroupoid"
}
],
"etymology_templates": [
{
"args": {
"1": "en",
"2": "group",
"3": "oid"
},
"expansion": "group + -oid",
"name": "suffix"
}
],
"etymology_text": "From group + -oid.",
"forms": [
{
"form": "groupoids",
"tags": [
"plural"
]
}
],
"head_templates": [
{
"args": {},
"expansion": "groupoid (plural groupoids)",
"name": "en-noun"
}
],
"lang": "English",
"lang_code": "en",
"pos": "noun",
"senses": [
{
"categories": [
"en:Algebra"
],
"glosses": [
"A magma: a set with a total binary operation."
],
"links": [
[
"algebra",
"algebra"
],
[
"magma",
"magma"
],
[
"set",
"set"
],
[
"total",
"total"
],
[
"binary",
"binary"
],
[
"operation",
"operation"
]
],
"raw_glosses": [
"(algebra) A magma: a set with a total binary operation."
],
"topics": [
"algebra",
"mathematics",
"sciences"
]
},
{
"categories": [
"English terms with quotations",
"en:Algebra",
"en:Category theory"
],
"examples": [
{
"bold_text_offsets": [
[
71,
79
],
[
111,
119
]
],
"ref": "2013, Julia Goedecke, Category Theory:",
"text": "[...] A category in which every morphism is an isomorphism is called a groupoid.\n This means that a group is a groupoid with only one object. [...]",
"type": "quotation"
}
],
"glosses": [
"A set with a partial binary operation that is associative and has identities and inverses."
],
"links": [
[
"algebra",
"algebra"
],
[
"category theory",
"category theory"
],
[
"partial",
"partial"
],
[
"associative",
"associative"
],
[
"identities",
"identity"
],
[
"inverse",
"inverse"
]
],
"raw_glosses": [
"(algebra and category theory) A set with a partial binary operation that is associative and has identities and inverses."
],
"topics": [
"algebra",
"category-theory",
"computing",
"engineering",
"mathematics",
"natural-sciences",
"physical-sciences",
"sciences"
]
}
],
"sounds": [
{
"ipa": "/ˈɡɹuːpɔɪd/"
},
{
"audio": "LL-Q1860 (eng)-Flame, not lame-groupoid.wav",
"mp3_url": "https://upload.wikimedia.org/wikipedia/commons/transcoded/c/c4/LL-Q1860_%28eng%29-Flame%2C_not_lame-groupoid.wav/LL-Q1860_%28eng%29-Flame%2C_not_lame-groupoid.wav.mp3",
"ogg_url": "https://upload.wikimedia.org/wikipedia/commons/transcoded/c/c4/LL-Q1860_%28eng%29-Flame%2C_not_lame-groupoid.wav/LL-Q1860_%28eng%29-Flame%2C_not_lame-groupoid.wav.ogg"
}
],
"translations": [
{
"alt": "あぐん",
"code": "ja",
"lang": "Japanese",
"lang_code": "ja",
"roman": "agun",
"sense": "a magma",
"word": "亜群"
},
{
"code": "es",
"lang": "Spanish",
"lang_code": "es",
"sense": "a magma",
"tags": [
"masculine"
],
"word": "grupoide"
},
{
"code": "fr",
"lang": "French",
"lang_code": "fr",
"sense": "a set with a partial binary operation...",
"tags": [
"masculine"
],
"word": "groupoïde"
},
{
"code": "de",
"lang": "German",
"lang_code": "de",
"sense": "a set with a partial binary operation...",
"tags": [
"neuter"
],
"word": "Gruppoid"
},
{
"code": "it",
"lang": "Italian",
"lang_code": "it",
"sense": "a set with a partial binary operation...",
"tags": [
"masculine"
],
"word": "gruppoide"
},
{
"code": "pt",
"lang": "Portuguese",
"lang_code": "pt",
"sense": "a set with a partial binary operation...",
"tags": [
"masculine"
],
"word": "grupoide"
},
{
"code": "es",
"lang": "Spanish",
"lang_code": "es",
"sense": "a set with a partial binary operation...",
"tags": [
"masculine"
],
"word": "grupoide"
}
],
"word": "groupoid"
}
Download raw JSONL data for groupoid meaning in English (3.7kB)
This page is a part of the kaikki.org machine-readable English dictionary. This dictionary is based on structured data extracted on 2026-02-01 from the enwiktionary dump dated 2026-01-01 using wiktextract (f492ef9 and 9905b1f). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.