"comma category" meaning in English

See comma category in All languages combined, or Wiktionary

Noun

Forms: comma categories [plural]
Head templates: {{en-noun}} comma category (plural comma categories)
  1. (category theory) A category built out of a pair of functors that have the same codomain. Wikipedia link: comma category Categories (topical): Category theory Hyponyms: arrow category, slice category, coslice category Translations (Translations): Kommakategorie (German), 쉼표 범주 (swimpyo beomju) (Korean), категория запятой (kategorija zapjatoj) (Russian), categoría coma (Spanish)

Inflected forms

{
  "forms": [
    {
      "form": "comma categories",
      "tags": [
        "plural"
      ]
    }
  ],
  "head_templates": [
    {
      "args": {},
      "expansion": "comma category (plural comma categories)",
      "name": "en-noun"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "noun",
  "senses": [
    {
      "categories": [
        {
          "kind": "other",
          "name": "English entries with incorrect language header",
          "parents": [
            "Entries with incorrect language header",
            "Entry maintenance"
          ],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Entries with translation boxes",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with 1 entry",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with entries",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with German translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with Korean translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with Russian translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with Spanish translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "topical",
          "langcode": "en",
          "name": "Category theory",
          "orig": "en:Category theory",
          "parents": [
            "Mathematics",
            "Formal sciences",
            "Sciences",
            "All topics",
            "Fundamental"
          ],
          "source": "w"
        }
      ],
      "examples": [
        {
          "text": "Given a pair of functors S:𝒜→𝒞 and T:ℬ→𝒞, objects of the comma category S↓T are arrows h:S(A)→T(B) parametrized by triples (A, B, h), and given morphisms f:A→A' and g:B→B', then a morphism of the said comma category is a commuting square parametrized by the pair (f, g) and spanning the area from h to h':S(A')→T(B') and from S(f) to T(g)."
        }
      ],
      "glosses": [
        "A category built out of a pair of functors that have the same codomain."
      ],
      "hyponyms": [
        {
          "word": "arrow category"
        },
        {
          "word": "slice category"
        },
        {
          "word": "coslice category"
        }
      ],
      "id": "en-comma_category-en-noun-Nn9E~3Dm",
      "links": [
        [
          "category theory",
          "category theory"
        ],
        [
          "functor",
          "functor"
        ]
      ],
      "raw_glosses": [
        "(category theory) A category built out of a pair of functors that have the same codomain."
      ],
      "topics": [
        "category-theory",
        "computing",
        "engineering",
        "mathematics",
        "natural-sciences",
        "physical-sciences",
        "sciences"
      ],
      "translations": [
        {
          "code": "de",
          "lang": "German",
          "sense": "Translations",
          "word": "Kommakategorie"
        },
        {
          "code": "ko",
          "lang": "Korean",
          "roman": "swimpyo beomju",
          "sense": "Translations",
          "word": "쉼표 범주"
        },
        {
          "code": "ru",
          "lang": "Russian",
          "roman": "kategorija zapjatoj",
          "sense": "Translations",
          "word": "категория запятой"
        },
        {
          "code": "es",
          "lang": "Spanish",
          "sense": "Translations",
          "word": "categoría coma"
        }
      ],
      "wikipedia": [
        "comma category"
      ]
    }
  ],
  "word": "comma category"
}
{
  "forms": [
    {
      "form": "comma categories",
      "tags": [
        "plural"
      ]
    }
  ],
  "head_templates": [
    {
      "args": {},
      "expansion": "comma category (plural comma categories)",
      "name": "en-noun"
    }
  ],
  "hyponyms": [
    {
      "word": "arrow category"
    },
    {
      "word": "slice category"
    },
    {
      "word": "coslice category"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "noun",
  "senses": [
    {
      "categories": [
        "English countable nouns",
        "English entries with incorrect language header",
        "English lemmas",
        "English multiword terms",
        "English nouns",
        "Entries with translation boxes",
        "Pages with 1 entry",
        "Pages with entries",
        "Terms with German translations",
        "Terms with Korean translations",
        "Terms with Russian translations",
        "Terms with Spanish translations",
        "Translation table header lacks gloss",
        "en:Category theory"
      ],
      "examples": [
        {
          "text": "Given a pair of functors S:𝒜→𝒞 and T:ℬ→𝒞, objects of the comma category S↓T are arrows h:S(A)→T(B) parametrized by triples (A, B, h), and given morphisms f:A→A' and g:B→B', then a morphism of the said comma category is a commuting square parametrized by the pair (f, g) and spanning the area from h to h':S(A')→T(B') and from S(f) to T(g)."
        }
      ],
      "glosses": [
        "A category built out of a pair of functors that have the same codomain."
      ],
      "links": [
        [
          "category theory",
          "category theory"
        ],
        [
          "functor",
          "functor"
        ]
      ],
      "raw_glosses": [
        "(category theory) A category built out of a pair of functors that have the same codomain."
      ],
      "topics": [
        "category-theory",
        "computing",
        "engineering",
        "mathematics",
        "natural-sciences",
        "physical-sciences",
        "sciences"
      ],
      "wikipedia": [
        "comma category"
      ]
    }
  ],
  "translations": [
    {
      "code": "de",
      "lang": "German",
      "sense": "Translations",
      "word": "Kommakategorie"
    },
    {
      "code": "ko",
      "lang": "Korean",
      "roman": "swimpyo beomju",
      "sense": "Translations",
      "word": "쉼표 범주"
    },
    {
      "code": "ru",
      "lang": "Russian",
      "roman": "kategorija zapjatoj",
      "sense": "Translations",
      "word": "категория запятой"
    },
    {
      "code": "es",
      "lang": "Spanish",
      "sense": "Translations",
      "word": "categoría coma"
    }
  ],
  "word": "comma category"
}

Download raw JSONL data for comma category meaning in English (2.0kB)


This page is a part of the kaikki.org machine-readable English dictionary. This dictionary is based on structured data extracted on 2024-12-21 from the enwiktionary dump dated 2024-12-04 using wiktextract (d8cb2f3 and 4e554ae). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.

If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.