See prestack in All languages combined, or Wiktionary
{ "etymology_templates": [ { "args": { "1": "en", "2": "pre", "3": "stack" }, "expansion": "pre- + stack", "name": "prefix" } ], "etymology_text": "From pre- + stack.", "head_templates": [ { "args": { "1": "-" }, "expansion": "prestack (not comparable)", "name": "en-adj" } ], "lang": "English", "lang_code": "en", "pos": "adj", "senses": [ { "glosses": [ "Before stacking, in the context of seismic migration." ], "id": "en-prestack-en-adj-PwJ3Qrn~", "links": [ [ "stacking", "stacking" ] ], "tags": [ "not-comparable" ] } ], "wikipedia": [ "prestack" ], "word": "prestack" } { "etymology_templates": [ { "args": { "1": "en", "2": "pre", "3": "stack" }, "expansion": "pre- + stack", "name": "prefix" } ], "etymology_text": "From pre- + stack.", "forms": [ { "form": "prestacks", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "prestack (plural prestacks)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ { "kind": "topical", "langcode": "en", "name": "Category theory", "orig": "en:Category theory", "parents": [ "Mathematics", "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" }, { "_dis": "20 80", "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w+disamb" }, { "_dis": "44 56", "kind": "other", "name": "English terms prefixed with pre-", "parents": [], "source": "w+disamb" }, { "_dis": "13 87", "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w+disamb" }, { "_dis": "8 92", "kind": "other", "name": "Pages with entries", "parents": [], "source": "w+disamb" } ], "glosses": [ "The category c is called a prestack over a category C with a Grothendieck topology if it is fibered over C and for any object U of C and objects x, y of c with image U, the functor from objects over U to sets taking F:V→U to Hom(F*x,F*y) is a sheaf." ], "id": "en-prestack-en-noun-dhJlkcOK", "links": [ [ "category theory", "category theory" ], [ "category", "category#English" ], [ "Grothendieck topology", "Grothendieck topology#English" ], [ "fibered", "fibered#English" ], [ "object", "object#English" ], [ "image", "image#English" ], [ "functor", "functor#English" ], [ "set", "set#English" ], [ "sheaf", "sheaf#English" ] ], "raw_glosses": [ "(category theory) The category c is called a prestack over a category C with a Grothendieck topology if it is fibered over C and for any object U of C and objects x, y of c with image U, the functor from objects over U to sets taking F:V→U to Hom(F*x,F*y) is a sheaf." ], "topics": [ "category-theory", "computing", "engineering", "mathematics", "natural-sciences", "physical-sciences", "sciences" ] } ], "wikipedia": [ "prestack" ], "word": "prestack" }
{ "categories": [ "English adjectives", "English countable nouns", "English entries with incorrect language header", "English lemmas", "English nouns", "English terms prefixed with pre-", "English uncomparable adjectives", "Pages with 1 entry", "Pages with entries" ], "etymology_templates": [ { "args": { "1": "en", "2": "pre", "3": "stack" }, "expansion": "pre- + stack", "name": "prefix" } ], "etymology_text": "From pre- + stack.", "head_templates": [ { "args": { "1": "-" }, "expansion": "prestack (not comparable)", "name": "en-adj" } ], "lang": "English", "lang_code": "en", "pos": "adj", "senses": [ { "glosses": [ "Before stacking, in the context of seismic migration." ], "links": [ [ "stacking", "stacking" ] ], "tags": [ "not-comparable" ] } ], "wikipedia": [ "prestack" ], "word": "prestack" } { "categories": [ "English adjectives", "English countable nouns", "English entries with incorrect language header", "English lemmas", "English nouns", "English terms prefixed with pre-", "English uncomparable adjectives", "Pages with 1 entry", "Pages with entries" ], "etymology_templates": [ { "args": { "1": "en", "2": "pre", "3": "stack" }, "expansion": "pre- + stack", "name": "prefix" } ], "etymology_text": "From pre- + stack.", "forms": [ { "form": "prestacks", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "prestack (plural prestacks)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ "en:Category theory" ], "glosses": [ "The category c is called a prestack over a category C with a Grothendieck topology if it is fibered over C and for any object U of C and objects x, y of c with image U, the functor from objects over U to sets taking F:V→U to Hom(F*x,F*y) is a sheaf." ], "links": [ [ "category theory", "category theory" ], [ "category", "category#English" ], [ "Grothendieck topology", "Grothendieck topology#English" ], [ "fibered", "fibered#English" ], [ "object", "object#English" ], [ "image", "image#English" ], [ "functor", "functor#English" ], [ "set", "set#English" ], [ "sheaf", "sheaf#English" ] ], "raw_glosses": [ "(category theory) The category c is called a prestack over a category C with a Grothendieck topology if it is fibered over C and for any object U of C and objects x, y of c with image U, the functor from objects over U to sets taking F:V→U to Hom(F*x,F*y) is a sheaf." ], "topics": [ "category-theory", "computing", "engineering", "mathematics", "natural-sciences", "physical-sciences", "sciences" ] } ], "wikipedia": [ "prestack" ], "word": "prestack" }
Download raw JSONL data for prestack meaning in English (2.5kB)
This page is a part of the kaikki.org machine-readable English dictionary. This dictionary is based on structured data extracted on 2025-04-02 from the enwiktionary dump dated 2025-03-21 using wiktextract (db8a5a5 and fb63907). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.