"nilpotent" meaning in English

See nilpotent in All languages combined, or Wiktionary

Adjective

IPA: /nɪlˈpəʊtənt/
Etymology: From nil (“not any”) + potent (“having power”) with literal meaning “having zero power” - bearing Latin roots nil and potens. Coined in 1870, along with idempotent, by American mathematician Benjamin Peirce to describe elements of associative algebras. Etymology templates: {{compound|en|nil|potent|t1=not any|t2=having power}} nil (“not any”) + potent (“having power”), {{uder|en|la|-}} Latin Head templates: {{en-adj|-}} nilpotent (not comparable)
  1. (algebra, ring theory, of an element x of a semigroup or ring) Such that, for some positive integer n, xⁿ = 0. Tags: not-comparable Categories (topical): Algebra Derived forms: nilpotent algebra, nilpotent ideal, nilpotently, nilpotent orbit, nilpotent semigroup Related terms: nilpotence, nilpotency, idempotent, nullipotent, unipotent Coordinate_terms: idempotent Translations ((algebra)): nilpotentní (Czech), nilpotent (Danish), nilpotenta (Esperanto), nulpotenca (Esperanto), nilpotentti (Finnish), nilpotent (French), нильпотент (nilʹpotent) (Russian), nilpotente (Spanish)
    Sense id: en-nilpotent-en-adj-uY-zS2oB Categories (other): English entries with incorrect language header, English undefined derivations, Entries with translation boxes, Pages with 1 entry, Pages with entries, Terms with Czech translations, Terms with Danish translations, Terms with Esperanto translations, Terms with Finnish translations, Terms with French translations, Terms with Russian translations, Terms with Spanish translations Disambiguation of English entries with incorrect language header: 64 36 Disambiguation of English undefined derivations: 59 41 Disambiguation of Entries with translation boxes: 74 26 Disambiguation of Pages with 1 entry: 57 43 Disambiguation of Pages with entries: 87 13 Disambiguation of Terms with Czech translations: 72 28 Disambiguation of Terms with Danish translations: 88 12 Disambiguation of Terms with Esperanto translations: 80 20 Disambiguation of Terms with Finnish translations: 80 20 Disambiguation of Terms with French translations: 76 24 Disambiguation of Terms with Russian translations: 79 21 Disambiguation of Terms with Spanish translations: 83 17 Topics: algebra, mathematics, sciences

Noun

IPA: /nɪlˈpəʊtənt/ Forms: nilpotents [plural]
Etymology: From nil (“not any”) + potent (“having power”) with literal meaning “having zero power” - bearing Latin roots nil and potens. Coined in 1870, along with idempotent, by American mathematician Benjamin Peirce to describe elements of associative algebras. Etymology templates: {{compound|en|nil|potent|t1=not any|t2=having power}} nil (“not any”) + potent (“having power”), {{uder|en|la|-}} Latin Head templates: {{en-noun}} nilpotent (plural nilpotents)
  1. (algebra) A nilpotent element. Categories (topical): Algebra
    Sense id: en-nilpotent-en-noun-noEHS11f Topics: algebra, mathematics, sciences

Inflected forms

{
  "etymology_templates": [
    {
      "args": {
        "1": "en",
        "2": "nil",
        "3": "potent",
        "t1": "not any",
        "t2": "having power"
      },
      "expansion": "nil (“not any”) + potent (“having power”)",
      "name": "compound"
    },
    {
      "args": {
        "1": "en",
        "2": "la",
        "3": "-"
      },
      "expansion": "Latin",
      "name": "uder"
    }
  ],
  "etymology_text": "From nil (“not any”) + potent (“having power”) with literal meaning “having zero power” - bearing Latin roots nil and potens.\nCoined in 1870, along with idempotent, by American mathematician Benjamin Peirce to describe elements of associative algebras.",
  "head_templates": [
    {
      "args": {
        "1": "-"
      },
      "expansion": "nilpotent (not comparable)",
      "name": "en-adj"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "adj",
  "senses": [
    {
      "categories": [
        {
          "kind": "topical",
          "langcode": "en",
          "name": "Algebra",
          "orig": "en:Algebra",
          "parents": [
            "Mathematics",
            "Formal sciences",
            "Sciences",
            "All topics",
            "Fundamental"
          ],
          "source": "w"
        },
        {
          "_dis": "64 36",
          "kind": "other",
          "name": "English entries with incorrect language header",
          "parents": [
            "Entries with incorrect language header",
            "Entry maintenance"
          ],
          "source": "w+disamb"
        },
        {
          "_dis": "59 41",
          "kind": "other",
          "name": "English undefined derivations",
          "parents": [
            "Undefined derivations",
            "Entry maintenance"
          ],
          "source": "w+disamb"
        },
        {
          "_dis": "74 26",
          "kind": "other",
          "name": "Entries with translation boxes",
          "parents": [],
          "source": "w+disamb"
        },
        {
          "_dis": "57 43",
          "kind": "other",
          "name": "Pages with 1 entry",
          "parents": [],
          "source": "w+disamb"
        },
        {
          "_dis": "87 13",
          "kind": "other",
          "name": "Pages with entries",
          "parents": [],
          "source": "w+disamb"
        },
        {
          "_dis": "72 28",
          "kind": "other",
          "name": "Terms with Czech translations",
          "parents": [],
          "source": "w+disamb"
        },
        {
          "_dis": "88 12",
          "kind": "other",
          "name": "Terms with Danish translations",
          "parents": [],
          "source": "w+disamb"
        },
        {
          "_dis": "80 20",
          "kind": "other",
          "name": "Terms with Esperanto translations",
          "parents": [],
          "source": "w+disamb"
        },
        {
          "_dis": "80 20",
          "kind": "other",
          "name": "Terms with Finnish translations",
          "parents": [],
          "source": "w+disamb"
        },
        {
          "_dis": "76 24",
          "kind": "other",
          "name": "Terms with French translations",
          "parents": [],
          "source": "w+disamb"
        },
        {
          "_dis": "79 21",
          "kind": "other",
          "name": "Terms with Russian translations",
          "parents": [],
          "source": "w+disamb"
        },
        {
          "_dis": "83 17",
          "kind": "other",
          "name": "Terms with Spanish translations",
          "parents": [],
          "source": "w+disamb"
        }
      ],
      "coordinate_terms": [
        {
          "word": "idempotent"
        }
      ],
      "derived": [
        {
          "word": "nilpotent algebra"
        },
        {
          "word": "nilpotent ideal"
        },
        {
          "word": "nilpotently"
        },
        {
          "word": "nilpotent orbit"
        },
        {
          "word": "nilpotent semigroup"
        }
      ],
      "examples": [
        {
          "ref": "2012, Martin W. Liebeck, Gary M. Seitz, Unipotent and Nilpotent Classes in Simple Algebraic Groups and Lie Algebras, American Mathematical Society, page 129:",
          "text": "The rest of this book is devoted to determining the conjugacy classes and centralizers of nilpotent elements in L(G) and unipotent elements in G, where G is an exceptional algebraic group of type E₈,E₇, E₆, F₄ or G₂ over an algebraically closed field K of characteristic p. This chapter contains statements of the main results for nilpotent elements.",
          "type": "quote"
        }
      ],
      "glosses": [
        "Such that, for some positive integer n, xⁿ = 0."
      ],
      "id": "en-nilpotent-en-adj-uY-zS2oB",
      "links": [
        [
          "algebra",
          "algebra"
        ],
        [
          "element",
          "element"
        ],
        [
          "semigroup",
          "semigroup"
        ],
        [
          "ring",
          "ring"
        ]
      ],
      "qualifier": "ring theory",
      "raw_glosses": [
        "(algebra, ring theory, of an element x of a semigroup or ring) Such that, for some positive integer n, xⁿ = 0."
      ],
      "raw_tags": [
        "of an element x of a semigroup or ring"
      ],
      "related": [
        {
          "word": "nilpotence"
        },
        {
          "word": "nilpotency"
        },
        {
          "word": "idempotent"
        },
        {
          "word": "nullipotent"
        },
        {
          "word": "unipotent"
        }
      ],
      "tags": [
        "not-comparable"
      ],
      "topics": [
        "algebra",
        "mathematics",
        "sciences"
      ],
      "translations": [
        {
          "code": "cs",
          "lang": "Czech",
          "sense": "(algebra)",
          "word": "nilpotentní"
        },
        {
          "code": "da",
          "lang": "Danish",
          "sense": "(algebra)",
          "word": "nilpotent"
        },
        {
          "code": "eo",
          "lang": "Esperanto",
          "sense": "(algebra)",
          "word": "nilpotenta"
        },
        {
          "code": "eo",
          "lang": "Esperanto",
          "sense": "(algebra)",
          "word": "nulpotenca"
        },
        {
          "code": "fi",
          "lang": "Finnish",
          "sense": "(algebra)",
          "word": "nilpotentti"
        },
        {
          "code": "fr",
          "lang": "French",
          "sense": "(algebra)",
          "word": "nilpotent"
        },
        {
          "code": "ru",
          "lang": "Russian",
          "roman": "nilʹpotent",
          "sense": "(algebra)",
          "word": "нильпотент"
        },
        {
          "code": "es",
          "lang": "Spanish",
          "sense": "(algebra)",
          "word": "nilpotente"
        }
      ]
    }
  ],
  "sounds": [
    {
      "ipa": "/nɪlˈpəʊtənt/"
    }
  ],
  "wikipedia": [
    "Benjamin Peirce",
    "nilpotent"
  ],
  "word": "nilpotent"
}

{
  "etymology_templates": [
    {
      "args": {
        "1": "en",
        "2": "nil",
        "3": "potent",
        "t1": "not any",
        "t2": "having power"
      },
      "expansion": "nil (“not any”) + potent (“having power”)",
      "name": "compound"
    },
    {
      "args": {
        "1": "en",
        "2": "la",
        "3": "-"
      },
      "expansion": "Latin",
      "name": "uder"
    }
  ],
  "etymology_text": "From nil (“not any”) + potent (“having power”) with literal meaning “having zero power” - bearing Latin roots nil and potens.\nCoined in 1870, along with idempotent, by American mathematician Benjamin Peirce to describe elements of associative algebras.",
  "forms": [
    {
      "form": "nilpotents",
      "tags": [
        "plural"
      ]
    }
  ],
  "head_templates": [
    {
      "args": {},
      "expansion": "nilpotent (plural nilpotents)",
      "name": "en-noun"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "noun",
  "senses": [
    {
      "categories": [
        {
          "kind": "topical",
          "langcode": "en",
          "name": "Algebra",
          "orig": "en:Algebra",
          "parents": [
            "Mathematics",
            "Formal sciences",
            "Sciences",
            "All topics",
            "Fundamental"
          ],
          "source": "w"
        }
      ],
      "examples": [
        {
          "ref": "2015, Garret Sobczyk, “Part I: Vector Analysis of Spinors”, in arXiv:",
          "text": "The so-called spinor algebra of C(2), the language of the quantum mechanics, is formulated in terms of the idempotents and nilpotents of the geometric algebra of space, including its beautiful representation on the Riemann sphere, and a new proof of the Heisenberg uncertainty principle.",
          "type": "quote"
        }
      ],
      "glosses": [
        "A nilpotent element."
      ],
      "id": "en-nilpotent-en-noun-noEHS11f",
      "links": [
        [
          "algebra",
          "algebra"
        ]
      ],
      "raw_glosses": [
        "(algebra) A nilpotent element."
      ],
      "topics": [
        "algebra",
        "mathematics",
        "sciences"
      ]
    }
  ],
  "sounds": [
    {
      "ipa": "/nɪlˈpəʊtənt/"
    }
  ],
  "wikipedia": [
    "Benjamin Peirce",
    "nilpotent"
  ],
  "word": "nilpotent"
}
{
  "categories": [
    "English adjectives",
    "English compound terms",
    "English countable nouns",
    "English entries with incorrect language header",
    "English lemmas",
    "English nouns",
    "English terms derived from Latin",
    "English uncomparable adjectives",
    "English undefined derivations",
    "Entries with translation boxes",
    "Pages with 1 entry",
    "Pages with entries",
    "Terms with Czech translations",
    "Terms with Danish translations",
    "Terms with Esperanto translations",
    "Terms with Finnish translations",
    "Terms with French translations",
    "Terms with Russian translations",
    "Terms with Spanish translations"
  ],
  "coordinate_terms": [
    {
      "word": "idempotent"
    }
  ],
  "derived": [
    {
      "word": "nilpotent algebra"
    },
    {
      "word": "nilpotent ideal"
    },
    {
      "word": "nilpotently"
    },
    {
      "word": "nilpotent orbit"
    },
    {
      "word": "nilpotent semigroup"
    }
  ],
  "etymology_templates": [
    {
      "args": {
        "1": "en",
        "2": "nil",
        "3": "potent",
        "t1": "not any",
        "t2": "having power"
      },
      "expansion": "nil (“not any”) + potent (“having power”)",
      "name": "compound"
    },
    {
      "args": {
        "1": "en",
        "2": "la",
        "3": "-"
      },
      "expansion": "Latin",
      "name": "uder"
    }
  ],
  "etymology_text": "From nil (“not any”) + potent (“having power”) with literal meaning “having zero power” - bearing Latin roots nil and potens.\nCoined in 1870, along with idempotent, by American mathematician Benjamin Peirce to describe elements of associative algebras.",
  "head_templates": [
    {
      "args": {
        "1": "-"
      },
      "expansion": "nilpotent (not comparable)",
      "name": "en-adj"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "adj",
  "related": [
    {
      "word": "nilpotence"
    },
    {
      "word": "nilpotency"
    },
    {
      "word": "idempotent"
    },
    {
      "word": "nullipotent"
    },
    {
      "word": "unipotent"
    }
  ],
  "senses": [
    {
      "categories": [
        "English terms with quotations",
        "en:Algebra"
      ],
      "examples": [
        {
          "ref": "2012, Martin W. Liebeck, Gary M. Seitz, Unipotent and Nilpotent Classes in Simple Algebraic Groups and Lie Algebras, American Mathematical Society, page 129:",
          "text": "The rest of this book is devoted to determining the conjugacy classes and centralizers of nilpotent elements in L(G) and unipotent elements in G, where G is an exceptional algebraic group of type E₈,E₇, E₆, F₄ or G₂ over an algebraically closed field K of characteristic p. This chapter contains statements of the main results for nilpotent elements.",
          "type": "quote"
        }
      ],
      "glosses": [
        "Such that, for some positive integer n, xⁿ = 0."
      ],
      "links": [
        [
          "algebra",
          "algebra"
        ],
        [
          "element",
          "element"
        ],
        [
          "semigroup",
          "semigroup"
        ],
        [
          "ring",
          "ring"
        ]
      ],
      "qualifier": "ring theory",
      "raw_glosses": [
        "(algebra, ring theory, of an element x of a semigroup or ring) Such that, for some positive integer n, xⁿ = 0."
      ],
      "raw_tags": [
        "of an element x of a semigroup or ring"
      ],
      "tags": [
        "not-comparable"
      ],
      "topics": [
        "algebra",
        "mathematics",
        "sciences"
      ]
    }
  ],
  "sounds": [
    {
      "ipa": "/nɪlˈpəʊtənt/"
    }
  ],
  "translations": [
    {
      "code": "cs",
      "lang": "Czech",
      "sense": "(algebra)",
      "word": "nilpotentní"
    },
    {
      "code": "da",
      "lang": "Danish",
      "sense": "(algebra)",
      "word": "nilpotent"
    },
    {
      "code": "eo",
      "lang": "Esperanto",
      "sense": "(algebra)",
      "word": "nilpotenta"
    },
    {
      "code": "eo",
      "lang": "Esperanto",
      "sense": "(algebra)",
      "word": "nulpotenca"
    },
    {
      "code": "fi",
      "lang": "Finnish",
      "sense": "(algebra)",
      "word": "nilpotentti"
    },
    {
      "code": "fr",
      "lang": "French",
      "sense": "(algebra)",
      "word": "nilpotent"
    },
    {
      "code": "ru",
      "lang": "Russian",
      "roman": "nilʹpotent",
      "sense": "(algebra)",
      "word": "нильпотент"
    },
    {
      "code": "es",
      "lang": "Spanish",
      "sense": "(algebra)",
      "word": "nilpotente"
    }
  ],
  "wikipedia": [
    "Benjamin Peirce",
    "nilpotent"
  ],
  "word": "nilpotent"
}

{
  "categories": [
    "English adjectives",
    "English compound terms",
    "English countable nouns",
    "English entries with incorrect language header",
    "English lemmas",
    "English nouns",
    "English terms derived from Latin",
    "English uncomparable adjectives",
    "English undefined derivations",
    "Entries with translation boxes",
    "Pages with 1 entry",
    "Pages with entries",
    "Terms with Czech translations",
    "Terms with Danish translations",
    "Terms with Esperanto translations",
    "Terms with Finnish translations",
    "Terms with French translations",
    "Terms with Russian translations",
    "Terms with Spanish translations"
  ],
  "etymology_templates": [
    {
      "args": {
        "1": "en",
        "2": "nil",
        "3": "potent",
        "t1": "not any",
        "t2": "having power"
      },
      "expansion": "nil (“not any”) + potent (“having power”)",
      "name": "compound"
    },
    {
      "args": {
        "1": "en",
        "2": "la",
        "3": "-"
      },
      "expansion": "Latin",
      "name": "uder"
    }
  ],
  "etymology_text": "From nil (“not any”) + potent (“having power”) with literal meaning “having zero power” - bearing Latin roots nil and potens.\nCoined in 1870, along with idempotent, by American mathematician Benjamin Peirce to describe elements of associative algebras.",
  "forms": [
    {
      "form": "nilpotents",
      "tags": [
        "plural"
      ]
    }
  ],
  "head_templates": [
    {
      "args": {},
      "expansion": "nilpotent (plural nilpotents)",
      "name": "en-noun"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "noun",
  "senses": [
    {
      "categories": [
        "English terms with quotations",
        "en:Algebra"
      ],
      "examples": [
        {
          "ref": "2015, Garret Sobczyk, “Part I: Vector Analysis of Spinors”, in arXiv:",
          "text": "The so-called spinor algebra of C(2), the language of the quantum mechanics, is formulated in terms of the idempotents and nilpotents of the geometric algebra of space, including its beautiful representation on the Riemann sphere, and a new proof of the Heisenberg uncertainty principle.",
          "type": "quote"
        }
      ],
      "glosses": [
        "A nilpotent element."
      ],
      "links": [
        [
          "algebra",
          "algebra"
        ]
      ],
      "raw_glosses": [
        "(algebra) A nilpotent element."
      ],
      "topics": [
        "algebra",
        "mathematics",
        "sciences"
      ]
    }
  ],
  "sounds": [
    {
      "ipa": "/nɪlˈpəʊtənt/"
    }
  ],
  "wikipedia": [
    "Benjamin Peirce",
    "nilpotent"
  ],
  "word": "nilpotent"
}

Download raw JSONL data for nilpotent meaning in English (5.6kB)


This page is a part of the kaikki.org machine-readable English dictionary. This dictionary is based on structured data extracted on 2024-11-06 from the enwiktionary dump dated 2024-10-02 using wiktextract (fbeafe8 and 7f03c9b). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.

If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.