See Yoneda functor in All languages combined, or Wiktionary
{ "etymology_text": "Named after the Japanese mathematician Nobuo Yoneda (1930–1996).", "forms": [ { "form": "Yoneda functors", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "Yoneda functor (plural Yoneda functors)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ { "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w" }, { "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with entries", "parents": [], "source": "w" }, { "kind": "topical", "langcode": "en", "name": "Category theory", "orig": "en:Category theory", "parents": [ "Mathematics", "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" } ], "glosses": [ "A functor from a given category to the category of functors from that given category to Set (the category of sets) which maps any object of the given category to a hom functor represented by that object and any morphism to a natural isomorphism induced uniquely by that morphism according to the Yoneda lemma." ], "id": "en-Yoneda_functor-en-noun-5bDUjRwF", "links": [ [ "category theory", "category theory" ], [ "hom functor", "hom functor" ], [ "represented", "representable functor" ], [ "natural isomorphism", "natural isomorphism" ], [ "Yoneda lemma", "Yoneda lemma" ] ], "raw_glosses": [ "(category theory) A functor from a given category to the category of functors from that given category to Set (the category of sets) which maps any object of the given category to a hom functor represented by that object and any morphism to a natural isomorphism induced uniquely by that morphism according to the Yoneda lemma." ], "related": [ { "word": "Yoneda embedding" }, { "word": "Yoneda lemma" } ], "topics": [ "category-theory", "computing", "engineering", "mathematics", "natural-sciences", "physical-sciences", "sciences" ] } ], "word": "Yoneda functor" }
{ "etymology_text": "Named after the Japanese mathematician Nobuo Yoneda (1930–1996).", "forms": [ { "form": "Yoneda functors", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "Yoneda functor (plural Yoneda functors)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "related": [ { "word": "Yoneda embedding" }, { "word": "Yoneda lemma" } ], "senses": [ { "categories": [ "English countable nouns", "English entries with incorrect language header", "English lemmas", "English multiword terms", "English nouns", "Pages with 1 entry", "Pages with entries", "en:Category theory" ], "glosses": [ "A functor from a given category to the category of functors from that given category to Set (the category of sets) which maps any object of the given category to a hom functor represented by that object and any morphism to a natural isomorphism induced uniquely by that morphism according to the Yoneda lemma." ], "links": [ [ "category theory", "category theory" ], [ "hom functor", "hom functor" ], [ "represented", "representable functor" ], [ "natural isomorphism", "natural isomorphism" ], [ "Yoneda lemma", "Yoneda lemma" ] ], "raw_glosses": [ "(category theory) A functor from a given category to the category of functors from that given category to Set (the category of sets) which maps any object of the given category to a hom functor represented by that object and any morphism to a natural isomorphism induced uniquely by that morphism according to the Yoneda lemma." ], "topics": [ "category-theory", "computing", "engineering", "mathematics", "natural-sciences", "physical-sciences", "sciences" ] } ], "word": "Yoneda functor" }
Download raw JSONL data for Yoneda functor meaning in English (1.6kB)
This page is a part of the kaikki.org machine-readable English dictionary. This dictionary is based on structured data extracted on 2024-11-06 from the enwiktionary dump dated 2024-10-02 using wiktextract (fbeafe8 and 7f03c9b). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.