See Möbius group in All languages combined, or Wiktionary
{ "etymology_text": "Eponymous for August Ferdinand Möbius (1790–1868), a German mathematician and theoretical astronomer.", "forms": [ { "form": "Möbius groups", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "Möbius group (plural Möbius groups)", "name": "en-noun" } ], "hypernyms": [ { "_dis1": "52 48", "word": "Lie group" } ], "lang": "English", "lang_code": "en", "meronyms": [ { "_dis1": "52 48", "word": "Möbius transformation" } ], "pos": "noun", "related": [ { "_dis1": "52 48", "word": "Möbius strip" }, { "_dis1": "52 48", "word": "Möbius transformation" } ], "senses": [ { "categories": [ { "kind": "topical", "langcode": "en", "name": "Group theory", "orig": "en:Group theory", "parents": [ "Algebra", "Mathematics", "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" }, { "_dis": "67 33", "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w+disamb" }, { "_dis": "82 18", "kind": "other", "name": "Entries with translation boxes", "parents": [], "source": "w+disamb" }, { "_dis": "69 31", "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w+disamb" }, { "_dis": "77 23", "kind": "other", "name": "Pages with entries", "parents": [], "source": "w+disamb" }, { "_dis": "71 29", "kind": "other", "name": "Terms with Dutch translations", "parents": [], "source": "w+disamb" }, { "_dis": "76 24", "kind": "other", "name": "Terms with Spanish translations", "parents": [], "source": "w+disamb" }, { "_dis": "64 36", "kind": "other", "langcode": "en", "name": "Non-Euclidean geometry", "orig": "en:Non-Euclidean geometry", "parents": [], "source": "w+disamb" } ], "glosses": [ "The projective general linear group mathbf PGL(2,ℂ): the group of Möbius transformations on the Riemann sphere." ], "id": "en-Möbius_group-en-noun-J0is7NYn", "links": [ [ "group theory", "group theory" ], [ "projective general linear group", "projective general linear group" ], [ "Möbius transformations", "Möbius transformations" ], [ "Riemann sphere", "Riemann sphere" ] ], "raw_glosses": [ "(group theory) The projective general linear group mathbf PGL(2,ℂ): the group of Möbius transformations on the Riemann sphere." ], "topics": [ "group-theory", "mathematics", "sciences" ], "translations": [ { "_dis1": "94 6", "code": "nl", "lang": "Dutch", "sense": "PGL(2,C)", "tags": [ "feminine", "masculine" ], "word": "Möbius-groep" }, { "_dis1": "94 6", "code": "es", "lang": "Spanish", "sense": "PGL(2,C)", "tags": [ "masculine" ], "word": "grupo de Möbius" } ] }, { "categories": [ { "kind": "topical", "langcode": "en", "name": "Group theory", "orig": "en:Group theory", "parents": [ "Algebra", "Mathematics", "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" } ], "glosses": [ "For a given dimension n, the group of projective transformations leaving a particular hypersphere invariant." ], "id": "en-Möbius_group-en-noun-ohRFK8Nm", "links": [ [ "group theory", "group theory" ], [ "group", "group" ], [ "hypersphere", "hypersphere" ], [ "invariant", "invariant" ] ], "raw_glosses": [ "(group theory) For a given dimension n, the group of projective transformations leaving a particular hypersphere invariant." ], "topics": [ "group-theory", "mathematics", "sciences" ] } ], "synonyms": [ { "_dis1": "52 48", "word": "Moebius group" }, { "_dis1": "52 48", "word": "Mobius group" } ], "wikipedia": [ "Möbius group" ], "word": "Möbius group" }
{ "categories": [ "English countable nouns", "English entries with incorrect language header", "English eponyms", "English lemmas", "English multiword terms", "English nouns", "English terms spelled with Ö", "English terms spelled with ◌̈", "Entries with translation boxes", "Pages with 1 entry", "Pages with entries", "Terms with Dutch translations", "Terms with Spanish translations", "en:Non-Euclidean geometry" ], "etymology_text": "Eponymous for August Ferdinand Möbius (1790–1868), a German mathematician and theoretical astronomer.", "forms": [ { "form": "Möbius groups", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "Möbius group (plural Möbius groups)", "name": "en-noun" } ], "hypernyms": [ { "word": "Lie group" } ], "lang": "English", "lang_code": "en", "meronyms": [ { "word": "Möbius transformation" } ], "pos": "noun", "related": [ { "word": "Möbius strip" }, { "word": "Möbius transformation" } ], "senses": [ { "categories": [ "en:Group theory" ], "glosses": [ "The projective general linear group mathbf PGL(2,ℂ): the group of Möbius transformations on the Riemann sphere." ], "links": [ [ "group theory", "group theory" ], [ "projective general linear group", "projective general linear group" ], [ "Möbius transformations", "Möbius transformations" ], [ "Riemann sphere", "Riemann sphere" ] ], "raw_glosses": [ "(group theory) The projective general linear group mathbf PGL(2,ℂ): the group of Möbius transformations on the Riemann sphere." ], "topics": [ "group-theory", "mathematics", "sciences" ] }, { "categories": [ "en:Group theory" ], "glosses": [ "For a given dimension n, the group of projective transformations leaving a particular hypersphere invariant." ], "links": [ [ "group theory", "group theory" ], [ "group", "group" ], [ "hypersphere", "hypersphere" ], [ "invariant", "invariant" ] ], "raw_glosses": [ "(group theory) For a given dimension n, the group of projective transformations leaving a particular hypersphere invariant." ], "topics": [ "group-theory", "mathematics", "sciences" ] } ], "synonyms": [ { "word": "Moebius group" }, { "word": "Mobius group" } ], "translations": [ { "code": "nl", "lang": "Dutch", "sense": "PGL(2,C)", "tags": [ "feminine", "masculine" ], "word": "Möbius-groep" }, { "code": "es", "lang": "Spanish", "sense": "PGL(2,C)", "tags": [ "masculine" ], "word": "grupo de Möbius" } ], "wikipedia": [ "Möbius group" ], "word": "Möbius group" }
Download raw JSONL data for Möbius group meaning in English (2.3kB)
This page is a part of the kaikki.org machine-readable English dictionary. This dictionary is based on structured data extracted on 2024-12-21 from the enwiktionary dump dated 2024-12-04 using wiktextract (d8cb2f3 and 4e554ae). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.