"Dirichlet eta function" meaning in English

See Dirichlet eta function in All languages combined, or Wiktionary

Proper name

Etymology: Named after Johann Peter Gustav Lejeune Dirichlet (1805–1859), German mathematician. Head templates: {{en-proper noun}} Dirichlet eta function
  1. (mathematics, mathematical analysis) The alternating sum of the Dirichlet series expansion of the Riemann zeta function:η(s)=∑ₙ₌₁ ᪲(-1)ⁿ⁻¹/nˢ=1/(1ˢ)-1/(2ˢ)+1/(3ˢ)-1/(4ˢ)+⋯. Wikipedia link: Dirichlet eta function
{
  "etymology_text": "Named after Johann Peter Gustav Lejeune Dirichlet (1805–1859), German mathematician.",
  "head_templates": [
    {
      "args": {},
      "expansion": "Dirichlet eta function",
      "name": "en-proper noun"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "name",
  "senses": [
    {
      "categories": [
        {
          "kind": "other",
          "name": "English entries with incorrect language header",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with 1 entry",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with entries",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "langcode": "en",
          "name": "Functions",
          "orig": "en:Functions",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "langcode": "en",
          "name": "Mathematical analysis",
          "orig": "en:Mathematical analysis",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "langcode": "en",
          "name": "Mathematics",
          "orig": "en:Mathematics",
          "parents": [],
          "source": "w"
        }
      ],
      "glosses": [
        "The alternating sum of the Dirichlet series expansion of the Riemann zeta function:η(s)=∑ₙ₌₁ ᪲(-1)ⁿ⁻¹/nˢ=1/(1ˢ)-1/(2ˢ)+1/(3ˢ)-1/(4ˢ)+⋯."
      ],
      "id": "en-Dirichlet_eta_function-en-name-Dmpx-nTW",
      "links": [
        [
          "mathematics",
          "mathematics"
        ],
        [
          "mathematical analysis",
          "mathematical analysis"
        ],
        [
          "alternating",
          "alternating"
        ],
        [
          "sum",
          "sum"
        ],
        [
          "Dirichlet series",
          "Dirichlet series"
        ],
        [
          "Riemann zeta function",
          "Riemann zeta function"
        ]
      ],
      "raw_glosses": [
        "(mathematics, mathematical analysis) The alternating sum of the Dirichlet series expansion of the Riemann zeta function:η(s)=∑ₙ₌₁ ᪲(-1)ⁿ⁻¹/nˢ=1/(1ˢ)-1/(2ˢ)+1/(3ˢ)-1/(4ˢ)+⋯."
      ],
      "topics": [
        "mathematical-analysis",
        "mathematics",
        "sciences"
      ],
      "wikipedia": [
        "Dirichlet eta function"
      ]
    }
  ],
  "word": "Dirichlet eta function"
}
{
  "etymology_text": "Named after Johann Peter Gustav Lejeune Dirichlet (1805–1859), German mathematician.",
  "head_templates": [
    {
      "args": {},
      "expansion": "Dirichlet eta function",
      "name": "en-proper noun"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "name",
  "senses": [
    {
      "categories": [
        "English entries with incorrect language header",
        "English eponyms",
        "English lemmas",
        "English multiword terms",
        "English proper nouns",
        "English uncountable nouns",
        "Pages with 1 entry",
        "Pages with entries",
        "en:Functions",
        "en:Mathematical analysis",
        "en:Mathematics"
      ],
      "glosses": [
        "The alternating sum of the Dirichlet series expansion of the Riemann zeta function:η(s)=∑ₙ₌₁ ᪲(-1)ⁿ⁻¹/nˢ=1/(1ˢ)-1/(2ˢ)+1/(3ˢ)-1/(4ˢ)+⋯."
      ],
      "links": [
        [
          "mathematics",
          "mathematics"
        ],
        [
          "mathematical analysis",
          "mathematical analysis"
        ],
        [
          "alternating",
          "alternating"
        ],
        [
          "sum",
          "sum"
        ],
        [
          "Dirichlet series",
          "Dirichlet series"
        ],
        [
          "Riemann zeta function",
          "Riemann zeta function"
        ]
      ],
      "raw_glosses": [
        "(mathematics, mathematical analysis) The alternating sum of the Dirichlet series expansion of the Riemann zeta function:η(s)=∑ₙ₌₁ ᪲(-1)ⁿ⁻¹/nˢ=1/(1ˢ)-1/(2ˢ)+1/(3ˢ)-1/(4ˢ)+⋯."
      ],
      "topics": [
        "mathematical-analysis",
        "mathematics",
        "sciences"
      ],
      "wikipedia": [
        "Dirichlet eta function"
      ]
    }
  ],
  "word": "Dirichlet eta function"
}

Download raw JSONL data for Dirichlet eta function meaning in English (1.3kB)


This page is a part of the kaikki.org machine-readable English dictionary. This dictionary is based on structured data extracted on 2025-05-08 from the enwiktionary dump dated 2025-05-01 using wiktextract (887c61b and 3d4dee6). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.

If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.