"Dirichlet eta function" meaning in All languages combined

See Dirichlet eta function on Wiktionary

Proper name [English]

Etymology: Named after Johann Peter Gustav Lejeune Dirichlet (1805–1859), German mathematician. Head templates: {{en-proper noun}} Dirichlet eta function
  1. (mathematics, mathematical analysis) The alternating sum of the Dirichlet series expansion of the Riemann zeta function:η(s)=∑ₙ₌₁ ᪲(-1)ⁿ⁻¹/nˢ=1/(1ˢ)-1/(2ˢ)+1/(3ˢ)-1/(4ˢ)+⋯. Wikipedia link: Dirichlet eta function Categories (topical): Functions, Mathematical analysis, Mathematics
    Sense id: en-Dirichlet_eta_function-en-name-Dmpx-nTW Categories (other): English entries with incorrect language header, Pages with 1 entry, Pages with entries Topics: mathematical-analysis, mathematics, sciences
{
  "etymology_text": "Named after Johann Peter Gustav Lejeune Dirichlet (1805–1859), German mathematician.",
  "head_templates": [
    {
      "args": {},
      "expansion": "Dirichlet eta function",
      "name": "en-proper noun"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "name",
  "senses": [
    {
      "categories": [
        {
          "kind": "other",
          "name": "English entries with incorrect language header",
          "parents": [
            "Entries with incorrect language header",
            "Entry maintenance"
          ],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with 1 entry",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with entries",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "topical",
          "langcode": "en",
          "name": "Functions",
          "orig": "en:Functions",
          "parents": [
            "Algebra",
            "Calculus",
            "Geometry",
            "Mathematical analysis",
            "Mathematics",
            "Formal sciences",
            "Sciences",
            "All topics",
            "Fundamental"
          ],
          "source": "w"
        },
        {
          "kind": "topical",
          "langcode": "en",
          "name": "Mathematical analysis",
          "orig": "en:Mathematical analysis",
          "parents": [
            "Mathematics",
            "Formal sciences",
            "Sciences",
            "All topics",
            "Fundamental"
          ],
          "source": "w"
        },
        {
          "kind": "topical",
          "langcode": "en",
          "name": "Mathematics",
          "orig": "en:Mathematics",
          "parents": [
            "Formal sciences",
            "Sciences",
            "All topics",
            "Fundamental"
          ],
          "source": "w"
        }
      ],
      "glosses": [
        "The alternating sum of the Dirichlet series expansion of the Riemann zeta function:η(s)=∑ₙ₌₁ ᪲(-1)ⁿ⁻¹/nˢ=1/(1ˢ)-1/(2ˢ)+1/(3ˢ)-1/(4ˢ)+⋯."
      ],
      "id": "en-Dirichlet_eta_function-en-name-Dmpx-nTW",
      "links": [
        [
          "mathematics",
          "mathematics"
        ],
        [
          "mathematical analysis",
          "mathematical analysis"
        ],
        [
          "alternating",
          "alternating"
        ],
        [
          "sum",
          "sum"
        ],
        [
          "Dirichlet series",
          "Dirichlet series"
        ],
        [
          "Riemann zeta function",
          "Riemann zeta function"
        ]
      ],
      "raw_glosses": [
        "(mathematics, mathematical analysis) The alternating sum of the Dirichlet series expansion of the Riemann zeta function:η(s)=∑ₙ₌₁ ᪲(-1)ⁿ⁻¹/nˢ=1/(1ˢ)-1/(2ˢ)+1/(3ˢ)-1/(4ˢ)+⋯."
      ],
      "topics": [
        "mathematical-analysis",
        "mathematics",
        "sciences"
      ],
      "wikipedia": [
        "Dirichlet eta function"
      ]
    }
  ],
  "word": "Dirichlet eta function"
}
{
  "etymology_text": "Named after Johann Peter Gustav Lejeune Dirichlet (1805–1859), German mathematician.",
  "head_templates": [
    {
      "args": {},
      "expansion": "Dirichlet eta function",
      "name": "en-proper noun"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "name",
  "senses": [
    {
      "categories": [
        "English entries with incorrect language header",
        "English eponyms",
        "English lemmas",
        "English multiword terms",
        "English proper nouns",
        "English uncountable nouns",
        "Pages with 1 entry",
        "Pages with entries",
        "en:Functions",
        "en:Mathematical analysis",
        "en:Mathematics"
      ],
      "glosses": [
        "The alternating sum of the Dirichlet series expansion of the Riemann zeta function:η(s)=∑ₙ₌₁ ᪲(-1)ⁿ⁻¹/nˢ=1/(1ˢ)-1/(2ˢ)+1/(3ˢ)-1/(4ˢ)+⋯."
      ],
      "links": [
        [
          "mathematics",
          "mathematics"
        ],
        [
          "mathematical analysis",
          "mathematical analysis"
        ],
        [
          "alternating",
          "alternating"
        ],
        [
          "sum",
          "sum"
        ],
        [
          "Dirichlet series",
          "Dirichlet series"
        ],
        [
          "Riemann zeta function",
          "Riemann zeta function"
        ]
      ],
      "raw_glosses": [
        "(mathematics, mathematical analysis) The alternating sum of the Dirichlet series expansion of the Riemann zeta function:η(s)=∑ₙ₌₁ ᪲(-1)ⁿ⁻¹/nˢ=1/(1ˢ)-1/(2ˢ)+1/(3ˢ)-1/(4ˢ)+⋯."
      ],
      "topics": [
        "mathematical-analysis",
        "mathematics",
        "sciences"
      ],
      "wikipedia": [
        "Dirichlet eta function"
      ]
    }
  ],
  "word": "Dirichlet eta function"
}

Download raw JSONL data for Dirichlet eta function meaning in All languages combined (1.3kB)


This page is a part of the kaikki.org machine-readable All languages combined dictionary. This dictionary is based on structured data extracted on 2024-11-28 from the enwiktionary dump dated 2024-11-21 using wiktextract (65a6e81 and 0dbea76). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.

If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.