See superhomogeneous in All languages combined, or Wiktionary
{ "etymology_templates": [ { "args": { "1": "en", "2": "super", "3": "homogeneous" }, "expansion": "super- + homogeneous", "name": "prefix" } ], "etymology_text": "From super- + homogeneous.", "head_templates": [ { "args": { "1": "-" }, "expansion": "superhomogeneous (not comparable)", "name": "en-adj" } ], "lang": "English", "lang_code": "en", "pos": "adj", "senses": [ { "categories": [ { "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w" }, { "kind": "other", "name": "English terms prefixed with super-", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with entries", "parents": [], "source": "w" }, { "kind": "topical", "langcode": "en", "name": "Mathematics", "orig": "en:Mathematics", "parents": [ "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" } ], "examples": [ { "type": "example" } ], "id": "en-superhomogeneous-en-adj-47DEQpj8", "links": [ [ "mathematics", "mathematics" ] ], "raw_glosses": [ "(mathematics)" ], "tags": [ "empty-gloss", "error-lua-exec", "no-gloss", "not-comparable" ], "topics": [ "mathematics", "sciences" ] } ], "sounds": [ { "audio": "LL-Q1860 (eng)-Flame, not lame-superhomogeneous.wav", "mp3_url": "https://upload.wikimedia.org/wikipedia/commons/transcoded/d/de/LL-Q1860_%28eng%29-Flame%2C_not_lame-superhomogeneous.wav/LL-Q1860_%28eng%29-Flame%2C_not_lame-superhomogeneous.wav.mp3", "ogg_url": "https://upload.wikimedia.org/wikipedia/commons/transcoded/d/de/LL-Q1860_%28eng%29-Flame%2C_not_lame-superhomogeneous.wav/LL-Q1860_%28eng%29-Flame%2C_not_lame-superhomogeneous.wav.ogg" } ], "word": "superhomogeneous" }
{ "etymology_templates": [ { "args": { "1": "en", "2": "super", "3": "homogeneous" }, "expansion": "super- + homogeneous", "name": "prefix" } ], "etymology_text": "From super- + homogeneous.", "head_templates": [ { "args": { "1": "-" }, "expansion": "superhomogeneous (not comparable)", "name": "en-adj" } ], "lang": "English", "lang_code": "en", "pos": "adj", "senses": [ { "categories": [ "English adjectives", "English entries with incorrect language header", "English lemmas", "English terms prefixed with super-", "English uncomparable adjectives", "Pages with 1 entry", "Pages with entries", "en:Mathematics" ], "examples": [ { "type": "example" } ], "links": [ [ "mathematics", "mathematics" ] ], "raw_glosses": [ "(mathematics)" ], "tags": [ "empty-gloss", "error-lua-exec", "no-gloss", "not-comparable" ], "topics": [ "mathematics", "sciences" ] } ], "sounds": [ { "audio": "LL-Q1860 (eng)-Flame, not lame-superhomogeneous.wav", "mp3_url": "https://upload.wikimedia.org/wikipedia/commons/transcoded/d/de/LL-Q1860_%28eng%29-Flame%2C_not_lame-superhomogeneous.wav/LL-Q1860_%28eng%29-Flame%2C_not_lame-superhomogeneous.wav.mp3", "ogg_url": "https://upload.wikimedia.org/wikipedia/commons/transcoded/d/de/LL-Q1860_%28eng%29-Flame%2C_not_lame-superhomogeneous.wav/LL-Q1860_%28eng%29-Flame%2C_not_lame-superhomogeneous.wav.ogg" } ], "word": "superhomogeneous" }
Download raw JSONL data for superhomogeneous meaning in English (1.3kB)
{ "called_from": "luaexec/683", "msg": "LUA error in #invoke('quote', 'quote_t', 'type=journal') parent ('Template:quote-journal', {1: 'en', 'year': '2016', 'date': '', 'author': 'Subhro Ghosh; Joel Lebowitz', 'title': 'Number rigidity in superhomogeneous random point fields', 'journal': 'arXiv', 'url': 'http://arxiv.org/abs/1601.04216', 'doi': '', 'volume': '', 'issue': '', 'pages': '', 'passage': \"These conditions are : (a) the variance of the number of particles in a bounded domain <math>\\\\mathcal{O} \\\\subset \\\\mathbb{R}^d</math> grows slower than the volume of <math>\\\\mathcal{O}</math> (a.k.a. '''superhomogeneous''' point processes), when <math>\\\\mathcal{O} \\\\uparrow \\\\mathbb{R}^d</math> (in a self-similar manner), and (b) the truncated pair correlation function is bounded by <math>C_1[\", 2: 'x-y', 3: '+1]^{-2}</math> in <math>d=1</math> and by <math>C_2[', 4: 'x-y', 5: '+1]^{-(4+\\\\epsilon)}</math> in <math>d = 2</math>. '})", "path": [ "superhomogeneous", "Template:quote-journal", "#invoke", "#invoke" ], "section": "English", "subsection": "adjective", "title": "superhomogeneous", "trace": "[string \"Module:quote\"]:2758: |2= is an alias of |year=; cannot specify a value for both" } { "called_from": "luaexec/683", "msg": "LUA error in #invoke('quote', 'quote_t', 'type=journal') parent ('Template:quote-journal', {1: 'en', 'year': '2016', 'date': '', 'author': 'Subhro Ghosh; Joel Lebowitz', 'title': 'Number rigidity in superhomogeneous random point fields', 'journal': 'arXiv', 'url': 'http://arxiv.org/abs/1601.04216', 'doi': '', 'volume': '', 'issue': '', 'pages': '', 'passage': \"These conditions are : (a) the variance of the number of particles in a bounded domain <math>\\\\mathcal{O} \\\\subset \\\\mathbb{R}^d</math> grows slower than the volume of <math>\\\\mathcal{O}</math> (a.k.a. '''superhomogeneous''' point processes), when <math>\\\\mathcal{O} \\\\uparrow \\\\mathbb{R}^d</math> (in a self-similar manner), and (b) the truncated pair correlation function is bounded by <math>C_1[\", 2: 'x-y', 3: '+1]^{-2}</math> in <math>d=1</math> and by <math>C_2[', 4: 'x-y', 5: '+1]^{-(4+\\\\epsilon)}</math> in <math>d = 2</math>. '})", "path": [ "superhomogeneous", "Template:quote-journal", "#invoke", "#invoke" ], "section": "English", "subsection": "adjective", "title": "superhomogeneous", "trace": "[string \"Module:quote\"]:2758: |2= is an alias of |year=; cannot specify a value for both" }
This page is a part of the kaikki.org machine-readable English dictionary. This dictionary is based on structured data extracted on 2025-04-05 from the enwiktionary dump dated 2025-04-03 using wiktextract (8c1bb29 and fb63907). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.