See supercuspidal in All languages combined, or Wiktionary
{ "etymology_templates": [ { "args": { "1": "en", "2": "super", "3": "cuspidal" }, "expansion": "super- + cuspidal", "name": "prefix" } ], "etymology_text": "From super- + cuspidal.", "head_templates": [ { "args": { "1": "-" }, "expansion": "supercuspidal (not comparable)", "name": "en-adj" } ], "lang": "English", "lang_code": "en", "pos": "adj", "senses": [ { "categories": [ { "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w" }, { "kind": "other", "name": "English terms prefixed with super-", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with entries", "parents": [], "source": "w" }, { "kind": "topical", "langcode": "en", "name": "Mathematics", "orig": "en:Mathematics", "parents": [ "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" } ], "examples": [ { "ref": "2015, Manish Mishra, “A Galois side analogue of a theorem of Bernstein”, in arXiv:", "text": "A theorem of Bernstein states that for any compact open subgroup K of G(k), there are, up to unramified twists, only finitely many K-spherical supercuspidal representations of G(k).", "type": "quote" } ], "glosses": [ "That has a zero Jacquet functor for every proper parabolic subgroup" ], "id": "en-supercuspidal-en-adj-BGJ-1RlY", "links": [ [ "mathematics", "mathematics" ], [ "zero", "zero" ], [ "parabolic", "parabolic" ], [ "subgroup", "subgroup" ] ], "raw_glosses": [ "(mathematics) That has a zero Jacquet functor for every proper parabolic subgroup" ], "tags": [ "not-comparable" ], "topics": [ "mathematics", "sciences" ] } ], "word": "supercuspidal" }
{ "etymology_templates": [ { "args": { "1": "en", "2": "super", "3": "cuspidal" }, "expansion": "super- + cuspidal", "name": "prefix" } ], "etymology_text": "From super- + cuspidal.", "head_templates": [ { "args": { "1": "-" }, "expansion": "supercuspidal (not comparable)", "name": "en-adj" } ], "lang": "English", "lang_code": "en", "pos": "adj", "senses": [ { "categories": [ "English adjectives", "English entries with incorrect language header", "English lemmas", "English terms prefixed with super-", "English terms with quotations", "English uncomparable adjectives", "Pages with 1 entry", "Pages with entries", "en:Mathematics" ], "examples": [ { "ref": "2015, Manish Mishra, “A Galois side analogue of a theorem of Bernstein”, in arXiv:", "text": "A theorem of Bernstein states that for any compact open subgroup K of G(k), there are, up to unramified twists, only finitely many K-spherical supercuspidal representations of G(k).", "type": "quote" } ], "glosses": [ "That has a zero Jacquet functor for every proper parabolic subgroup" ], "links": [ [ "mathematics", "mathematics" ], [ "zero", "zero" ], [ "parabolic", "parabolic" ], [ "subgroup", "subgroup" ] ], "raw_glosses": [ "(mathematics) That has a zero Jacquet functor for every proper parabolic subgroup" ], "tags": [ "not-comparable" ], "topics": [ "mathematics", "sciences" ] } ], "word": "supercuspidal" }
Download raw JSONL data for supercuspidal meaning in English (1.3kB)
This page is a part of the kaikki.org machine-readable English dictionary. This dictionary is based on structured data extracted on 2025-01-10 from the enwiktionary dump dated 2025-01-01 using wiktextract (df33d17 and 4ed51a5). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.