"stationary distribution" meaning in English

See stationary distribution in All languages combined, or Wiktionary

Noun

Forms: stationary distributions [plural]
Etymology: From stationary + distribution. Etymology templates: {{compound|en|stationary|distribution}} stationary + distribution Head templates: {{en-noun}} stationary distribution (plural stationary distributions)
  1. (mathematics, stochastic processes, of a Markov chain) a row vector π whose entries sum to 1 that satisfies the equation πP=π, where P is the transition matrix of the Markov chain. Wikipedia link: Markov_chain Categories (topical): Mathematics Translations (a row vector): stationäre Verteilung [feminine] (German), וקטור הסתברויות סטציונרי (véctor histabruyót statzyonári) (Hebrew), tigiling pamamahagi (Tagalog)

Inflected forms

{
  "etymology_templates": [
    {
      "args": {
        "1": "en",
        "2": "stationary",
        "3": "distribution"
      },
      "expansion": "stationary + distribution",
      "name": "compound"
    }
  ],
  "etymology_text": "From stationary + distribution.",
  "forms": [
    {
      "form": "stationary distributions",
      "tags": [
        "plural"
      ]
    }
  ],
  "head_templates": [
    {
      "args": {},
      "expansion": "stationary distribution (plural stationary distributions)",
      "name": "en-noun"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "noun",
  "senses": [
    {
      "categories": [
        {
          "kind": "other",
          "name": "English entries with incorrect language header",
          "parents": [
            "Entries with incorrect language header",
            "Entry maintenance"
          ],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Entries with translation boxes",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Hebrew terms with redundant script codes",
          "parents": [
            "Terms with redundant script codes",
            "Entry maintenance"
          ],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with 1 entry",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with entries",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with German translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with Hebrew translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with Tagalog translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "topical",
          "langcode": "en",
          "name": "Mathematics",
          "orig": "en:Mathematics",
          "parents": [
            "Formal sciences",
            "Sciences",
            "All topics",
            "Fundamental"
          ],
          "source": "w"
        }
      ],
      "glosses": [
        "a row vector π whose entries sum to 1 that satisfies the equation πP=π, where P is the transition matrix of the Markov chain."
      ],
      "id": "en-stationary_distribution-en-noun-7KO2ThYe",
      "links": [
        [
          "mathematics",
          "mathematics"
        ],
        [
          "Markov chain",
          "Markov chain"
        ],
        [
          "row vector",
          "row vector"
        ],
        [
          "transition matrix",
          "transition matrix"
        ]
      ],
      "qualifier": "stochastic processes",
      "raw_glosses": [
        "(mathematics, stochastic processes, of a Markov chain) a row vector π whose entries sum to 1 that satisfies the equation πP=π, where P is the transition matrix of the Markov chain."
      ],
      "raw_tags": [
        "of a Markov chain"
      ],
      "topics": [
        "mathematics",
        "sciences"
      ],
      "translations": [
        {
          "code": "de",
          "lang": "German",
          "sense": "a row vector",
          "tags": [
            "feminine"
          ],
          "word": "stationäre Verteilung"
        },
        {
          "code": "he",
          "lang": "Hebrew",
          "roman": "véctor histabruyót statzyonári",
          "sense": "a row vector",
          "word": "וקטור הסתברויות סטציונרי"
        },
        {
          "code": "tl",
          "lang": "Tagalog",
          "sense": "a row vector",
          "word": "tigiling pamamahagi"
        }
      ],
      "wikipedia": [
        "Markov_chain"
      ]
    }
  ],
  "word": "stationary distribution"
}
{
  "etymology_templates": [
    {
      "args": {
        "1": "en",
        "2": "stationary",
        "3": "distribution"
      },
      "expansion": "stationary + distribution",
      "name": "compound"
    }
  ],
  "etymology_text": "From stationary + distribution.",
  "forms": [
    {
      "form": "stationary distributions",
      "tags": [
        "plural"
      ]
    }
  ],
  "head_templates": [
    {
      "args": {},
      "expansion": "stationary distribution (plural stationary distributions)",
      "name": "en-noun"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "noun",
  "senses": [
    {
      "categories": [
        "English compound terms",
        "English countable nouns",
        "English entries with incorrect language header",
        "English lemmas",
        "English multiword terms",
        "English nouns",
        "Entries with translation boxes",
        "Hebrew terms with redundant script codes",
        "Pages with 1 entry",
        "Pages with entries",
        "Terms with German translations",
        "Terms with Hebrew translations",
        "Terms with Tagalog translations",
        "en:Mathematics"
      ],
      "glosses": [
        "a row vector π whose entries sum to 1 that satisfies the equation πP=π, where P is the transition matrix of the Markov chain."
      ],
      "links": [
        [
          "mathematics",
          "mathematics"
        ],
        [
          "Markov chain",
          "Markov chain"
        ],
        [
          "row vector",
          "row vector"
        ],
        [
          "transition matrix",
          "transition matrix"
        ]
      ],
      "qualifier": "stochastic processes",
      "raw_glosses": [
        "(mathematics, stochastic processes, of a Markov chain) a row vector π whose entries sum to 1 that satisfies the equation πP=π, where P is the transition matrix of the Markov chain."
      ],
      "raw_tags": [
        "of a Markov chain"
      ],
      "topics": [
        "mathematics",
        "sciences"
      ],
      "wikipedia": [
        "Markov_chain"
      ]
    }
  ],
  "translations": [
    {
      "code": "de",
      "lang": "German",
      "sense": "a row vector",
      "tags": [
        "feminine"
      ],
      "word": "stationäre Verteilung"
    },
    {
      "code": "he",
      "lang": "Hebrew",
      "roman": "véctor histabruyót statzyonári",
      "sense": "a row vector",
      "word": "וקטור הסתברויות סטציונרי"
    },
    {
      "code": "tl",
      "lang": "Tagalog",
      "sense": "a row vector",
      "word": "tigiling pamamahagi"
    }
  ],
  "word": "stationary distribution"
}

Download raw JSONL data for stationary distribution meaning in English (1.9kB)


This page is a part of the kaikki.org machine-readable English dictionary. This dictionary is based on structured data extracted on 2025-01-15 from the enwiktionary dump dated 2025-01-01 using wiktextract (b941637 and 4230888). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.

If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.