See quasicentroid in All languages combined, or Wiktionary
{ "etymology_templates": [ { "args": { "1": "en", "2": "quasi", "3": "centroid" }, "expansion": "quasi- + centroid", "name": "prefix" } ], "etymology_text": "From quasi- + centroid.", "forms": [ { "form": "quasicentroids", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "quasicentroid (plural quasicentroids)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ { "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w" }, { "kind": "other", "name": "English terms prefixed with quasi-", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with entries", "parents": [], "source": "w" }, { "kind": "topical", "langcode": "en", "name": "Mathematics", "orig": "en:Mathematics", "parents": [ "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" } ], "examples": [ { "ref": "2016, Ruipu Bai, Qiyong Li, Kai Zhang, “Generalized derivations of 3-Lie algebras”, in arXiv:", "text": "The main results are: for all 3-Lie algebra A, 1) the generalized derivation algebra GDer(A) is the sum of quasiderivation algebra QDer(A) and quasicentroid Q#x5C;Gamma(A); 2) quasiderivations of A can be embedded as derivations in a larger algebra; 3) quasiderivation algebra QDer(A) normalizer quasicentroid, that is, #x5B;QDer(A),Q#x5C;Gamma(A)#x5D;#x5C;subseteqQ#x5C;Gamma(A); 4) if A contains a maximal diagonalized tours T, then QDer(A) and Q#x5C;Gamma(A) are diagonalized T-modules, that is, as T-modules, (T,T) semi-simplely acts on QDer(A) and Q#x5C;Gamma(A), respectively..", "type": "quote" } ], "id": "en-quasicentroid-en-noun-47DEQpj8", "links": [ [ "mathematics", "mathematics" ] ], "raw_glosses": [ "(mathematics)" ], "tags": [ "empty-gloss", "no-gloss" ], "topics": [ "mathematics", "sciences" ] } ], "word": "quasicentroid" }
{ "etymology_templates": [ { "args": { "1": "en", "2": "quasi", "3": "centroid" }, "expansion": "quasi- + centroid", "name": "prefix" } ], "etymology_text": "From quasi- + centroid.", "forms": [ { "form": "quasicentroids", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "quasicentroid (plural quasicentroids)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ "English countable nouns", "English entries with incorrect language header", "English lemmas", "English nouns", "English terms prefixed with quasi-", "English terms with quotations", "Pages with 1 entry", "Pages with entries", "en:Mathematics" ], "examples": [ { "ref": "2016, Ruipu Bai, Qiyong Li, Kai Zhang, “Generalized derivations of 3-Lie algebras”, in arXiv:", "text": "The main results are: for all 3-Lie algebra A, 1) the generalized derivation algebra GDer(A) is the sum of quasiderivation algebra QDer(A) and quasicentroid Q#x5C;Gamma(A); 2) quasiderivations of A can be embedded as derivations in a larger algebra; 3) quasiderivation algebra QDer(A) normalizer quasicentroid, that is, #x5B;QDer(A),Q#x5C;Gamma(A)#x5D;#x5C;subseteqQ#x5C;Gamma(A); 4) if A contains a maximal diagonalized tours T, then QDer(A) and Q#x5C;Gamma(A) are diagonalized T-modules, that is, as T-modules, (T,T) semi-simplely acts on QDer(A) and Q#x5C;Gamma(A), respectively..", "type": "quote" } ], "links": [ [ "mathematics", "mathematics" ] ], "raw_glosses": [ "(mathematics)" ], "tags": [ "empty-gloss", "no-gloss" ], "topics": [ "mathematics", "sciences" ] } ], "word": "quasicentroid" }
Download raw JSONL data for quasicentroid meaning in English (1.5kB)
This page is a part of the kaikki.org machine-readable English dictionary. This dictionary is based on structured data extracted on 2024-11-06 from the enwiktionary dump dated 2024-10-02 using wiktextract (fbeafe8 and 7f03c9b). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.