See primitive element in All languages combined, or Wiktionary
{ "forms": [ { "form": "primitive elements", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "primitive element (plural primitive elements)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "related": [ { "_dis1": "20 22 10 19 14 15", "word": "primitive polynomial" }, { "_dis1": "20 22 10 19 14 15", "word": "primitive root" } ], "senses": [ { "categories": [ { "kind": "topical", "langcode": "en", "name": "Algebra", "orig": "en:Algebra", "parents": [ "Mathematics", "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" }, { "_dis": "27 24 10 4 14 21", "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w+disamb" }, { "_dis": "15 25 11 2 18 29", "kind": "other", "name": "Entries with translation boxes", "parents": [], "source": "w+disamb" }, { "_dis": "24 23 13 6 15 20", "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w+disamb" }, { "_dis": "24 24 15 1 14 21", "kind": "other", "name": "Pages with entries", "parents": [], "source": "w+disamb" }, { "_dis": "16 24 19 2 17 21", "kind": "other", "name": "Terms with Finnish translations", "parents": [], "source": "w+disamb" } ], "examples": [ { "ref": "2009, Henning Stichtenoth, Algebraic Function Fields and Codes, 2nd edition, Springer, page 330:", "text": "An algebraic extension L#47;K is called simple if L#61;K(#92;alpha) for some #92;alpha#92;inL. The element #92;alpha is called a primitive element for L#47;K. Every finite separable algebraic field extension is simple.\nSuppose that L#61;K(#92;alpha#95;1,#92;dots#92;alpha#95;r) is a finite separable extension and K#95;0#92;subseteqK is an infinite subset of K. Then there exists a primitive element #92;alpha of the form #92;textstyle#92;alpha#61;#92;sum#95;#123;i#61;1#125;ʳc#95;i#92;alpha#95;i with c#95;i#92;inK#95;0.", "type": "quote" } ], "glosses": [ "An element that generates a simple extension." ], "id": "en-primitive_element-en-noun-oygpHnQ4", "links": [ [ "algebra", "algebra" ], [ "element", "element" ], [ "generate", "generate" ], [ "simple extension", "simple extension" ] ], "qualifier": "field theory", "raw_glosses": [ "(algebra, field theory) An element that generates a simple extension." ], "synonyms": [ { "_dis1": "33 23 7 7 14 16", "sense": "element that generates a field extension", "word": "generating element" } ], "topics": [ "algebra", "mathematics", "sciences" ], "translations": [ { "_dis1": "33 23 7 7 14 16", "code": "fi", "lang": "Finnish", "sense": "element that generates a field extension", "word": "primitiivinen alkio" } ] }, { "categories": [ { "kind": "topical", "langcode": "en", "name": "Algebra", "orig": "en:Algebra", "parents": [ "Mathematics", "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" }, { "_dis": "27 24 10 4 14 21", "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w+disamb" }, { "_dis": "15 25 11 2 18 29", "kind": "other", "name": "Entries with translation boxes", "parents": [], "source": "w+disamb" }, { "_dis": "24 23 13 6 15 20", "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w+disamb" }, { "_dis": "24 24 15 1 14 21", "kind": "other", "name": "Pages with entries", "parents": [], "source": "w+disamb" }, { "_dis": "16 24 19 2 17 21", "kind": "other", "name": "Terms with Finnish translations", "parents": [], "source": "w+disamb" } ], "examples": [ { "ref": "1996, J. J. Spilker, Jr. Chapter 3: GPS Signal Structure and Theoretical Performance, Bradford W. Parkinson, James J. Spilker (editors), Global Positioning System: Theory and Applications, Volume 1, AIAA, page 114, Likewise, α=α, etc., namely, the elements are all expressed as powers of α and because α=1, α is termed a primitive element of GF(2ⁿ). […]", "text": "Furthermore, if the irreducible polynomial has a primitive element α (where α=1) that is a root, then the polynomial is termed a primitive polynomial and corresponds to the polynomial for a maximal length feedback shift register." }, { "text": "2003, Soonhak Kwon, Chang Hoon Kim, Chun Pyu Hong, Efficient Exponentiation for a Class of Finite Fields GF(2ⁿ) Determined by Gauss Periods, Colin D. Walter, Çetin K. Koç, Christof Paar (editors), Cryptographic Hardware and Embedded Systems, CHES 2003: 5th International Workshop, Proceedings, Springer, LNCS 2779, page 228,\nAlso in the case of a Gauss period of type (n,1), i.e. a type I optimal normal element, we find a primitive element in GF(2ⁿ) which is a sparse polynomial of a type I optimal normal element and we propose a fast exponentiation algorithm which is applicable for both software and hardware purposes." }, { "ref": "2008, Stephen D. Cohen, Mateja Preśern, The Hansen-Mullen Primitivity Comjecture: Completion of Proof, James McKee, James Fraser McKee, Chris Smyth (editors, Number Theory and Polynomials, Cambridge University Press, page 89, For q a power of a prime p, let 𝔽_𝕢 be the finite field of order q. Its multiplicative group 𝔽^*_q is cyclic of order q-1 and a generator of 𝔽^*_q is called a primitive element of F_q. More generally, a primitive element γ of F_qⁿ, the unique extension of degree n of 𝔽_𝕢, is the root of a (necessarily monic and automatically irreducible) primitive polynomial f(x)∈ 𝔽_𝕢[x] of degree n. […]", "text": "Here, necessarily, c must be a primitive element of 𝔽_𝕢, since this is the norm of a root of the polynomial." } ], "glosses": [ "An element that generates the multiplicative group of a given Galois field (finite field)." ], "id": "en-primitive_element-en-noun-5IIAoA9e", "links": [ [ "algebra", "algebra" ], [ "element", "element" ], [ "generate", "generate" ], [ "multiplicative", "multiplicative" ], [ "group", "group" ], [ "Galois field", "Galois field" ], [ "field", "field" ] ], "qualifier": "field theory", "raw_glosses": [ "(algebra, field theory, of a finite field) An element that generates the multiplicative group of a given Galois field (finite field)." ], "raw_tags": [ "of a finite field" ], "synonyms": [ { "_dis1": "19 42 7 6 13 13", "sense": "element that generates the multiplicative group of a finite field", "word": "primitive root of unity" } ], "topics": [ "algebra", "mathematics", "sciences" ], "translations": [ { "_dis1": "18 39 8 5 13 17", "code": "fi", "lang": "Finnish", "sense": "element of a finite field that generates its multiplicative group", "word": "primitiivinen alkio" } ] }, { "categories": [ { "kind": "topical", "langcode": "en", "name": "Number theory", "orig": "en:Number theory", "parents": [ "Mathematics", "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" }, { "_dis": "27 24 10 4 14 21", "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w+disamb" }, { "_dis": "15 25 11 2 18 29", "kind": "other", "name": "Entries with translation boxes", "parents": [], "source": "w+disamb" }, { "_dis": "24 23 13 6 15 20", "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w+disamb" }, { "_dis": "24 24 15 1 14 21", "kind": "other", "name": "Pages with entries", "parents": [], "source": "w+disamb" }, { "_dis": "16 24 19 2 17 21", "kind": "other", "name": "Terms with Finnish translations", "parents": [], "source": "w+disamb" } ], "examples": [ { "text": "1972, W. Wesley Peterson, E. J. Weldon, Jr., Error-correcting Codes, The MIT Press, 2nd Edition, page 457,\nLet A be a prime number for which 2 is a primitive element. Then 2ᴬ⁻¹-1 is divisible by A." } ], "glosses": [ "Given a modulus n, a number g such that every number coprime to n is congruent (modulo n) to some power of g; equivalently, a generator of the multiplicative field of integers modulo n." ], "id": "en-primitive_element-en-noun-J-Mns-Jp", "links": [ [ "number theory", "number theory" ], [ "modulus", "modulus" ], [ "coprime", "coprime" ], [ "congruent", "congruent" ], [ "modulo", "modulo" ], [ "generator", "generator" ], [ "multiplicative field", "multiplicative field" ] ], "raw_glosses": [ "(number theory) Given a modulus n, a number g such that every number coprime to n is congruent (modulo n) to some power of g; equivalently, a generator of the multiplicative field of integers modulo n." ], "topics": [ "mathematics", "number-theory", "sciences" ] }, { "categories": [ { "kind": "topical", "langcode": "en", "name": "Algebra", "orig": "en:Algebra", "parents": [ "Mathematics", "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" } ], "examples": [ { "ref": "1985, Revista Matemática Iberoamericana, Volume 1, Real Sociedad Matemática Española, page 111:", "text": "But suppose L'#92;inC#95;#92;nu(S#95;0) so that #92;operatorname#123;det#125;(L')#61;#92;eta'#92;pi#92;blacktriangleright 0 for some totally positive unit #92;eta' and so that L' is everywhere locally a primitive''' element of the #92;mathfrako-lattice R#95;#92;nu.", "type": "quote" } ], "glosses": [ "An element that is not a positive integer multiple of another element of the lattice." ], "id": "en-primitive_element-en-noun-j1XuK-Lk", "links": [ [ "algebra", "algebra" ], [ "element", "element" ], [ "lattice", "lattice" ] ], "qualifier": "lattice theory", "raw_glosses": [ "(algebra, lattice theory, of a lattice) An element that is not a positive integer multiple of another element of the lattice." ], "raw_tags": [ "of a lattice" ], "topics": [ "algebra", "mathematics", "sciences" ], "translations": [ { "_dis1": "8 9 7 57 6 13", "code": "fi", "lang": "Finnish", "sense": "element of a lattice that is not a positive multiple of another element", "word": "primitiivinen alkio" } ] }, { "categories": [ { "kind": "topical", "langcode": "en", "name": "Algebra", "orig": "en:Algebra", "parents": [ "Mathematics", "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" }, { "_dis": "27 24 10 4 14 21", "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w+disamb" }, { "_dis": "15 25 11 2 18 29", "kind": "other", "name": "Entries with translation boxes", "parents": [], "source": "w+disamb" }, { "_dis": "24 23 13 6 15 20", "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w+disamb" }, { "_dis": "24 24 15 1 14 21", "kind": "other", "name": "Pages with entries", "parents": [], "source": "w+disamb" }, { "_dis": "16 24 19 2 17 21", "kind": "other", "name": "Terms with Finnish translations", "parents": [], "source": "w+disamb" } ], "examples": [ { "text": "2009, Masoud Khalkhali, Basic Noncommutative Geometry, European Mathematical Society, page 29,\nA primitive element of a Hopf algebra is an element h∈H such that\nΔh=1⊗h+h⊗1.\nIt is easily seen that the bracket [x,y]:=xy-yx of two primitive elements is again a primitive element. It follows that primitive elements form a Lie algebra. For H=U(g) any element of g is primitive and in fact using the Poincaré-Birkhoff-Win theorem, one can show that the set of primitive elements of U(g) coincides with the Lie algebra g." } ], "glosses": [ "An element x ∈ C such that μ(x) = x ⊗ g + g ⊗ x, where μ is the comultiplication and g is an element that maps to the multiplicative identity 1 of the base field under the counit (in particular, if C is a bialgebra, g = 1)." ], "id": "en-primitive_element-en-noun-mXYyKM~0", "links": [ [ "algebra", "algebra" ], [ "element", "element" ], [ "comultiplication", "comultiplication" ], [ "multiplicative identity", "multiplicative identity" ], [ "counit", "counit" ], [ "bialgebra", "bialgebra" ] ], "raw_glosses": [ "(algebra, of a coalgebra over an element g) An element x ∈ C such that μ(x) = x ⊗ g + g ⊗ x, where μ is the comultiplication and g is an element that maps to the multiplicative identity 1 of the base field under the counit (in particular, if C is a bialgebra, g = 1)." ], "raw_tags": [ "of a coalgebra over an element g" ], "topics": [ "algebra", "mathematics", "sciences" ] }, { "categories": [ { "kind": "topical", "langcode": "en", "name": "Group theory", "orig": "en:Group theory", "parents": [ "Algebra", "Mathematics", "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" }, { "_dis": "27 24 10 4 14 21", "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w+disamb" }, { "_dis": "15 25 11 2 18 29", "kind": "other", "name": "Entries with translation boxes", "parents": [], "source": "w+disamb" }, { "_dis": "24 23 13 6 15 20", "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w+disamb" }, { "_dis": "24 24 15 1 14 21", "kind": "other", "name": "Pages with entries", "parents": [], "source": "w+disamb" }, { "_dis": "16 24 19 2 17 21", "kind": "other", "name": "Terms with Finnish translations", "parents": [], "source": "w+disamb" } ], "examples": [ { "ref": "2004, Dmitry Y. Bormotov, “Experimenting with Primitive Elements in F₂”, in Alexandre Borovik, Alexei G. Myasnikov, editors, Computational and Experimental Group Theory: AMS-ASL Joint Special Session, American Mathematical Society, page 215:", "text": "In this paper we apply regression models and other pattern recognition techniques to the task of classifying primitive elements of a free group.", "type": "quote" } ], "glosses": [ "An element of a free generating set of a given free group." ], "id": "en-primitive_element-en-noun-jnCPWXTJ", "links": [ [ "group theory", "group theory" ], [ "free group", "free group" ], [ "free generating set", "free generating set" ] ], "raw_glosses": [ "(group theory, of a free group) An element of a free generating set of a given free group." ], "raw_tags": [ "of a free group" ], "topics": [ "group-theory", "mathematics", "sciences" ] } ], "synonyms": [ { "_dis1": "20 22 10 19 14 15", "topics": [ "number-theory", "mathematics", "sciences" ], "word": "primitive root" } ], "translations": [ { "_dis1": "19 19 9 11 21 21", "code": "fi", "lang": "Finnish", "sense": "element of a coalgebra satisfying a particular condition", "word": "primitiivinen alkio" } ], "wikipedia": [ "Primitive element" ], "word": "primitive element" }
{ "categories": [ "English countable nouns", "English entries with incorrect language header", "English lemmas", "English multiword terms", "English nouns", "Entries with translation boxes", "Pages with 1 entry", "Pages with entries", "Terms with Finnish translations" ], "forms": [ { "form": "primitive elements", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "primitive element (plural primitive elements)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "related": [ { "word": "primitive polynomial" }, { "word": "primitive root" } ], "senses": [ { "categories": [ "English terms with quotations", "en:Algebra" ], "examples": [ { "ref": "2009, Henning Stichtenoth, Algebraic Function Fields and Codes, 2nd edition, Springer, page 330:", "text": "An algebraic extension L#47;K is called simple if L#61;K(#92;alpha) for some #92;alpha#92;inL. The element #92;alpha is called a primitive element for L#47;K. Every finite separable algebraic field extension is simple.\nSuppose that L#61;K(#92;alpha#95;1,#92;dots#92;alpha#95;r) is a finite separable extension and K#95;0#92;subseteqK is an infinite subset of K. Then there exists a primitive element #92;alpha of the form #92;textstyle#92;alpha#61;#92;sum#95;#123;i#61;1#125;ʳc#95;i#92;alpha#95;i with c#95;i#92;inK#95;0.", "type": "quote" } ], "glosses": [ "An element that generates a simple extension." ], "links": [ [ "algebra", "algebra" ], [ "element", "element" ], [ "generate", "generate" ], [ "simple extension", "simple extension" ] ], "qualifier": "field theory", "raw_glosses": [ "(algebra, field theory) An element that generates a simple extension." ], "topics": [ "algebra", "mathematics", "sciences" ] }, { "categories": [ "en:Algebra" ], "examples": [ { "ref": "1996, J. J. Spilker, Jr. Chapter 3: GPS Signal Structure and Theoretical Performance, Bradford W. Parkinson, James J. Spilker (editors), Global Positioning System: Theory and Applications, Volume 1, AIAA, page 114, Likewise, α=α, etc., namely, the elements are all expressed as powers of α and because α=1, α is termed a primitive element of GF(2ⁿ). […]", "text": "Furthermore, if the irreducible polynomial has a primitive element α (where α=1) that is a root, then the polynomial is termed a primitive polynomial and corresponds to the polynomial for a maximal length feedback shift register." }, { "text": "2003, Soonhak Kwon, Chang Hoon Kim, Chun Pyu Hong, Efficient Exponentiation for a Class of Finite Fields GF(2ⁿ) Determined by Gauss Periods, Colin D. Walter, Çetin K. Koç, Christof Paar (editors), Cryptographic Hardware and Embedded Systems, CHES 2003: 5th International Workshop, Proceedings, Springer, LNCS 2779, page 228,\nAlso in the case of a Gauss period of type (n,1), i.e. a type I optimal normal element, we find a primitive element in GF(2ⁿ) which is a sparse polynomial of a type I optimal normal element and we propose a fast exponentiation algorithm which is applicable for both software and hardware purposes." }, { "ref": "2008, Stephen D. Cohen, Mateja Preśern, The Hansen-Mullen Primitivity Comjecture: Completion of Proof, James McKee, James Fraser McKee, Chris Smyth (editors, Number Theory and Polynomials, Cambridge University Press, page 89, For q a power of a prime p, let 𝔽_𝕢 be the finite field of order q. Its multiplicative group 𝔽^*_q is cyclic of order q-1 and a generator of 𝔽^*_q is called a primitive element of F_q. More generally, a primitive element γ of F_qⁿ, the unique extension of degree n of 𝔽_𝕢, is the root of a (necessarily monic and automatically irreducible) primitive polynomial f(x)∈ 𝔽_𝕢[x] of degree n. […]", "text": "Here, necessarily, c must be a primitive element of 𝔽_𝕢, since this is the norm of a root of the polynomial." } ], "glosses": [ "An element that generates the multiplicative group of a given Galois field (finite field)." ], "links": [ [ "algebra", "algebra" ], [ "element", "element" ], [ "generate", "generate" ], [ "multiplicative", "multiplicative" ], [ "group", "group" ], [ "Galois field", "Galois field" ], [ "field", "field" ] ], "qualifier": "field theory", "raw_glosses": [ "(algebra, field theory, of a finite field) An element that generates the multiplicative group of a given Galois field (finite field)." ], "raw_tags": [ "of a finite field" ], "topics": [ "algebra", "mathematics", "sciences" ] }, { "categories": [ "en:Number theory" ], "examples": [ { "text": "1972, W. Wesley Peterson, E. J. Weldon, Jr., Error-correcting Codes, The MIT Press, 2nd Edition, page 457,\nLet A be a prime number for which 2 is a primitive element. Then 2ᴬ⁻¹-1 is divisible by A." } ], "glosses": [ "Given a modulus n, a number g such that every number coprime to n is congruent (modulo n) to some power of g; equivalently, a generator of the multiplicative field of integers modulo n." ], "links": [ [ "number theory", "number theory" ], [ "modulus", "modulus" ], [ "coprime", "coprime" ], [ "congruent", "congruent" ], [ "modulo", "modulo" ], [ "generator", "generator" ], [ "multiplicative field", "multiplicative field" ] ], "raw_glosses": [ "(number theory) Given a modulus n, a number g such that every number coprime to n is congruent (modulo n) to some power of g; equivalently, a generator of the multiplicative field of integers modulo n." ], "topics": [ "mathematics", "number-theory", "sciences" ] }, { "categories": [ "English terms with quotations", "Quotation templates to be cleaned", "en:Algebra" ], "examples": [ { "ref": "1985, Revista Matemática Iberoamericana, Volume 1, Real Sociedad Matemática Española, page 111:", "text": "But suppose L'#92;inC#95;#92;nu(S#95;0) so that #92;operatorname#123;det#125;(L')#61;#92;eta'#92;pi#92;blacktriangleright 0 for some totally positive unit #92;eta' and so that L' is everywhere locally a primitive''' element of the #92;mathfrako-lattice R#95;#92;nu.", "type": "quote" } ], "glosses": [ "An element that is not a positive integer multiple of another element of the lattice." ], "links": [ [ "algebra", "algebra" ], [ "element", "element" ], [ "lattice", "lattice" ] ], "qualifier": "lattice theory", "raw_glosses": [ "(algebra, lattice theory, of a lattice) An element that is not a positive integer multiple of another element of the lattice." ], "raw_tags": [ "of a lattice" ], "topics": [ "algebra", "mathematics", "sciences" ] }, { "categories": [ "en:Algebra" ], "examples": [ { "text": "2009, Masoud Khalkhali, Basic Noncommutative Geometry, European Mathematical Society, page 29,\nA primitive element of a Hopf algebra is an element h∈H such that\nΔh=1⊗h+h⊗1.\nIt is easily seen that the bracket [x,y]:=xy-yx of two primitive elements is again a primitive element. It follows that primitive elements form a Lie algebra. For H=U(g) any element of g is primitive and in fact using the Poincaré-Birkhoff-Win theorem, one can show that the set of primitive elements of U(g) coincides with the Lie algebra g." } ], "glosses": [ "An element x ∈ C such that μ(x) = x ⊗ g + g ⊗ x, where μ is the comultiplication and g is an element that maps to the multiplicative identity 1 of the base field under the counit (in particular, if C is a bialgebra, g = 1)." ], "links": [ [ "algebra", "algebra" ], [ "element", "element" ], [ "comultiplication", "comultiplication" ], [ "multiplicative identity", "multiplicative identity" ], [ "counit", "counit" ], [ "bialgebra", "bialgebra" ] ], "raw_glosses": [ "(algebra, of a coalgebra over an element g) An element x ∈ C such that μ(x) = x ⊗ g + g ⊗ x, where μ is the comultiplication and g is an element that maps to the multiplicative identity 1 of the base field under the counit (in particular, if C is a bialgebra, g = 1)." ], "raw_tags": [ "of a coalgebra over an element g" ], "topics": [ "algebra", "mathematics", "sciences" ] }, { "categories": [ "English terms with quotations", "en:Group theory" ], "examples": [ { "ref": "2004, Dmitry Y. Bormotov, “Experimenting with Primitive Elements in F₂”, in Alexandre Borovik, Alexei G. Myasnikov, editors, Computational and Experimental Group Theory: AMS-ASL Joint Special Session, American Mathematical Society, page 215:", "text": "In this paper we apply regression models and other pattern recognition techniques to the task of classifying primitive elements of a free group.", "type": "quote" } ], "glosses": [ "An element of a free generating set of a given free group." ], "links": [ [ "group theory", "group theory" ], [ "free group", "free group" ], [ "free generating set", "free generating set" ] ], "raw_glosses": [ "(group theory, of a free group) An element of a free generating set of a given free group." ], "raw_tags": [ "of a free group" ], "topics": [ "group-theory", "mathematics", "sciences" ] } ], "synonyms": [ { "topics": [ "number-theory", "mathematics", "sciences" ], "word": "primitive root" }, { "sense": "element that generates a field extension", "word": "generating element" }, { "sense": "element that generates the multiplicative group of a finite field", "word": "primitive root of unity" } ], "translations": [ { "code": "fi", "lang": "Finnish", "sense": "element that generates a field extension", "word": "primitiivinen alkio" }, { "code": "fi", "lang": "Finnish", "sense": "element of a finite field that generates its multiplicative group", "word": "primitiivinen alkio" }, { "code": "fi", "lang": "Finnish", "sense": "element of a lattice that is not a positive multiple of another element", "word": "primitiivinen alkio" }, { "code": "fi", "lang": "Finnish", "sense": "element of a coalgebra satisfying a particular condition", "word": "primitiivinen alkio" } ], "wikipedia": [ "Primitive element" ], "word": "primitive element" }
Download raw JSONL data for primitive element meaning in English (9.3kB)
This page is a part of the kaikki.org machine-readable English dictionary. This dictionary is based on structured data extracted on 2025-01-10 from the enwiktionary dump dated 2025-01-01 using wiktextract (df33d17 and 4ed51a5). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.