See linear operator in All languages combined, or Wiktionary
{ "forms": [ { "form": "linear operators", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "linear operator (plural linear operators)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ { "kind": "other", "name": "English entries with incorrect language header", "parents": [], "source": "w" }, { "kind": "other", "name": "Entries with translation boxes", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with entries", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with Bulgarian translations", "parents": [], "source": "w" }, { "kind": "other", "langcode": "en", "name": "Functional analysis", "orig": "en:Functional analysis", "parents": [], "source": "w" }, { "kind": "other", "langcode": "en", "name": "Functions", "orig": "en:Functions", "parents": [], "source": "w" }, { "kind": "other", "langcode": "en", "name": "Mathematics", "orig": "en:Mathematics", "parents": [], "source": "w" } ], "glosses": [ "An operator L such that for functions f and g and scalar λ, L (f + g) = L f + L g and L λf = λ L f." ], "id": "en-linear_operator-en-noun-PPpsF584", "links": [ [ "mathematics", "mathematics" ], [ "functional analysis", "functional analysis" ], [ "operator", "operator" ] ], "qualifier": "functional analysis", "raw_glosses": [ "(mathematics, functional analysis) An operator L such that for functions f and g and scalar λ, L (f + g) = L f + L g and L λf = λ L f." ], "related": [ { "word": "linear transformation" } ], "topics": [ "mathematics", "sciences" ], "translations": [ { "code": "bg", "english": "lineen operator", "lang": "Bulgarian", "sense": "operator", "tags": [ "masculine" ], "word": "линеен оператор" } ] } ], "word": "linear operator" }
{ "forms": [ { "form": "linear operators", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "linear operator (plural linear operators)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "related": [ { "word": "linear transformation" } ], "senses": [ { "categories": [ "English countable nouns", "English entries with incorrect language header", "English lemmas", "English multiword terms", "English nouns", "Entries with translation boxes", "Pages with 1 entry", "Pages with entries", "Terms with Bulgarian translations", "en:Functional analysis", "en:Functions", "en:Mathematics" ], "glosses": [ "An operator L such that for functions f and g and scalar λ, L (f + g) = L f + L g and L λf = λ L f." ], "links": [ [ "mathematics", "mathematics" ], [ "functional analysis", "functional analysis" ], [ "operator", "operator" ] ], "qualifier": "functional analysis", "raw_glosses": [ "(mathematics, functional analysis) An operator L such that for functions f and g and scalar λ, L (f + g) = L f + L g and L λf = λ L f." ], "topics": [ "mathematics", "sciences" ] } ], "translations": [ { "code": "bg", "english": "lineen operator", "lang": "Bulgarian", "sense": "operator", "tags": [ "masculine" ], "word": "линеен оператор" } ], "word": "linear operator" }
Download raw JSONL data for linear operator meaning in English (1.3kB)
This page is a part of the kaikki.org machine-readable English dictionary. This dictionary is based on structured data extracted on 2025-07-20 from the enwiktionary dump dated 2025-07-01 using wiktextract (45c4a21 and f1c2b61). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.