See homokurtosis in All languages combined, or Wiktionary
{ "antonyms": [ { "word": "heterokurtosis" } ], "etymology_templates": [ { "args": { "1": "en", "2": "homo", "3": "kurtosis" }, "expansion": "homo- + kurtosis", "name": "prefix" } ], "etymology_text": "From homo- + kurtosis.", "forms": [ { "form": "homokurtoses", "tags": [ "plural" ] } ], "head_templates": [ { "args": { "1": "homokurtoses" }, "expansion": "homokurtosis (plural homokurtoses)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ { "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w" }, { "kind": "other", "name": "English terms prefixed with homo-", "parents": [], "source": "w" }, { "kind": "other", "name": "Entries with translation boxes", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with entries", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with German translations", "parents": [], "source": "w" }, { "kind": "topical", "langcode": "en", "name": "Statistics", "orig": "en:Statistics", "parents": [ "Formal sciences", "Mathematics", "Sciences", "All topics", "Fundamental" ], "source": "w" } ], "examples": [ { "text": "2010, Jeffrey M. Wooldridge, Econometric Analysis of Cross-Section and Panel Data (2nd ed.), MIT Press\nIn terms of the original error u_i, this assumption implies that E(u_i⁴∣ mathbf xᵢ)= mathit constant≡κ² under H_0. This is called the homokurtosis (constant conditional fourth moment) assumption. Homokurtosis always holds when u is independent of mathbf x, but there are conditional distributions for which E(u∣ mathbf x)=0 and Var(u∣ mathbf x)=σ² but E(u⁴∣ mathbf x)=0 depends on mathbf x." } ], "glosses": [ "The property of a series of random variables of every variable having the same finite kurtosis" ], "id": "en-homokurtosis-en-noun-CwAJ-Gxt", "links": [ [ "statistics", "statistics" ], [ "series", "series" ], [ "random", "random" ], [ "variable", "variable" ], [ "finite", "finite" ], [ "kurtosis", "kurtosis" ] ], "raw_glosses": [ "(statistics) The property of a series of random variables of every variable having the same finite kurtosis" ], "related": [ { "word": "homoscedasticity" } ], "topics": [ "mathematics", "sciences", "statistics" ], "translations": [ { "code": "de", "lang": "German", "sense": "Translations", "tags": [ "feminine" ], "word": "Homokurtose" }, { "code": "de", "lang": "German", "sense": "Translations", "tags": [ "feminine" ], "word": "Homokurtosis" } ] } ], "word": "homokurtosis" }
{ "antonyms": [ { "word": "heterokurtosis" } ], "etymology_templates": [ { "args": { "1": "en", "2": "homo", "3": "kurtosis" }, "expansion": "homo- + kurtosis", "name": "prefix" } ], "etymology_text": "From homo- + kurtosis.", "forms": [ { "form": "homokurtoses", "tags": [ "plural" ] } ], "head_templates": [ { "args": { "1": "homokurtoses" }, "expansion": "homokurtosis (plural homokurtoses)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "related": [ { "word": "homoscedasticity" } ], "senses": [ { "categories": [ "English countable nouns", "English entries with incorrect language header", "English lemmas", "English nouns", "English nouns with irregular plurals", "English terms prefixed with homo-", "Entries with translation boxes", "Pages with 1 entry", "Pages with entries", "Terms with German translations", "Translation table header lacks gloss", "en:Statistics" ], "examples": [ { "text": "2010, Jeffrey M. Wooldridge, Econometric Analysis of Cross-Section and Panel Data (2nd ed.), MIT Press\nIn terms of the original error u_i, this assumption implies that E(u_i⁴∣ mathbf xᵢ)= mathit constant≡κ² under H_0. This is called the homokurtosis (constant conditional fourth moment) assumption. Homokurtosis always holds when u is independent of mathbf x, but there are conditional distributions for which E(u∣ mathbf x)=0 and Var(u∣ mathbf x)=σ² but E(u⁴∣ mathbf x)=0 depends on mathbf x." } ], "glosses": [ "The property of a series of random variables of every variable having the same finite kurtosis" ], "links": [ [ "statistics", "statistics" ], [ "series", "series" ], [ "random", "random" ], [ "variable", "variable" ], [ "finite", "finite" ], [ "kurtosis", "kurtosis" ] ], "raw_glosses": [ "(statistics) The property of a series of random variables of every variable having the same finite kurtosis" ], "topics": [ "mathematics", "sciences", "statistics" ] } ], "translations": [ { "code": "de", "lang": "German", "sense": "Translations", "tags": [ "feminine" ], "word": "Homokurtose" }, { "code": "de", "lang": "German", "sense": "Translations", "tags": [ "feminine" ], "word": "Homokurtosis" } ], "word": "homokurtosis" }
Download raw JSONL data for homokurtosis meaning in English (2.1kB)
This page is a part of the kaikki.org machine-readable English dictionary. This dictionary is based on structured data extracted on 2024-12-21 from the enwiktionary dump dated 2024-12-04 using wiktextract (d8cb2f3 and 4e554ae). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.