"framelet" meaning in English

See framelet in All languages combined, or Wiktionary

Noun

Forms: framelets [plural]
Etymology: From frame + -let. Etymology templates: {{suffix|en|frame|let}} frame + -let Head templates: {{en-noun}} framelet (plural framelets)
  1. (mathematics) A wavelet frame. Categories (topical): Mathematics

Inflected forms

{
  "etymology_templates": [
    {
      "args": {
        "1": "en",
        "2": "frame",
        "3": "let"
      },
      "expansion": "frame + -let",
      "name": "suffix"
    }
  ],
  "etymology_text": "From frame + -let.",
  "forms": [
    {
      "form": "framelets",
      "tags": [
        "plural"
      ]
    }
  ],
  "head_templates": [
    {
      "args": {},
      "expansion": "framelet (plural framelets)",
      "name": "en-noun"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "noun",
  "senses": [
    {
      "categories": [
        {
          "kind": "other",
          "name": "English entries with incorrect language header",
          "parents": [
            "Entries with incorrect language header",
            "Entry maintenance"
          ],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "English terms suffixed with -let",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with 1 entry",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with entries",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "topical",
          "langcode": "en",
          "name": "Mathematics",
          "orig": "en:Mathematics",
          "parents": [
            "Formal sciences",
            "Sciences",
            "All topics",
            "Fundamental"
          ],
          "source": "w"
        }
      ],
      "examples": [
        {
          "ref": "2015 July 27, Bin Han, Qingtang Jiang, Zuowei Shen, Xiaosheng Zhuang, “Symmetric Canonical Quincunx Tight Framelets with High Vanishing Moments and Smoothness [arXiv:1507.07492v1]”, in arXiv:",
          "text": "Such symmetric quincunx tight framelets are associated with quincunx tight framelet filter banks #92;#123;a#59;b#95;1,b#95;2,b#95;3#92;#125; having increasing orders of vanishing moments and enjoying the additional double canonical properties: b#95;1(k#95;1,k#95;2)#61;(-1)#123;1#43;k#95;1#43;k#95;2#125;a(1-k#95;1,-k#95;2),b#95;3(k#95;1,k#95;2)#61;(-1)#123;1#43;k#95;1#43;k#95;2#125;b#95;2(1-k#95;1,-k#95;2). For a low-pass filter a which is not a quincunx orthonormal wavelet filter, we show that a quincunx tight framelet filter bank #92;#123;a#59;b#95;1,#92;ldots,b#95;L#92;#125; with b#95;1 taking the above canonical form must have L#92;ge 3 high-pass filters.",
          "type": "quote"
        }
      ],
      "glosses": [
        "A wavelet frame."
      ],
      "id": "en-framelet-en-noun-K9Niemeh",
      "links": [
        [
          "mathematics",
          "mathematics"
        ],
        [
          "wavelet",
          "wavelet"
        ],
        [
          "frame",
          "frame"
        ]
      ],
      "raw_glosses": [
        "(mathematics) A wavelet frame."
      ],
      "topics": [
        "mathematics",
        "sciences"
      ]
    }
  ],
  "word": "framelet"
}
{
  "etymology_templates": [
    {
      "args": {
        "1": "en",
        "2": "frame",
        "3": "let"
      },
      "expansion": "frame + -let",
      "name": "suffix"
    }
  ],
  "etymology_text": "From frame + -let.",
  "forms": [
    {
      "form": "framelets",
      "tags": [
        "plural"
      ]
    }
  ],
  "head_templates": [
    {
      "args": {},
      "expansion": "framelet (plural framelets)",
      "name": "en-noun"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "noun",
  "senses": [
    {
      "categories": [
        "English countable nouns",
        "English entries with incorrect language header",
        "English lemmas",
        "English nouns",
        "English terms suffixed with -let",
        "English terms with quotations",
        "Pages with 1 entry",
        "Pages with entries",
        "en:Mathematics"
      ],
      "examples": [
        {
          "ref": "2015 July 27, Bin Han, Qingtang Jiang, Zuowei Shen, Xiaosheng Zhuang, “Symmetric Canonical Quincunx Tight Framelets with High Vanishing Moments and Smoothness [arXiv:1507.07492v1]”, in arXiv:",
          "text": "Such symmetric quincunx tight framelets are associated with quincunx tight framelet filter banks #92;#123;a#59;b#95;1,b#95;2,b#95;3#92;#125; having increasing orders of vanishing moments and enjoying the additional double canonical properties: b#95;1(k#95;1,k#95;2)#61;(-1)#123;1#43;k#95;1#43;k#95;2#125;a(1-k#95;1,-k#95;2),b#95;3(k#95;1,k#95;2)#61;(-1)#123;1#43;k#95;1#43;k#95;2#125;b#95;2(1-k#95;1,-k#95;2). For a low-pass filter a which is not a quincunx orthonormal wavelet filter, we show that a quincunx tight framelet filter bank #92;#123;a#59;b#95;1,#92;ldots,b#95;L#92;#125; with b#95;1 taking the above canonical form must have L#92;ge 3 high-pass filters.",
          "type": "quote"
        }
      ],
      "glosses": [
        "A wavelet frame."
      ],
      "links": [
        [
          "mathematics",
          "mathematics"
        ],
        [
          "wavelet",
          "wavelet"
        ],
        [
          "frame",
          "frame"
        ]
      ],
      "raw_glosses": [
        "(mathematics) A wavelet frame."
      ],
      "topics": [
        "mathematics",
        "sciences"
      ]
    }
  ],
  "word": "framelet"
}

Download raw JSONL data for framelet meaning in English (1.7kB)


This page is a part of the kaikki.org machine-readable English dictionary. This dictionary is based on structured data extracted on 2025-01-23 from the enwiktionary dump dated 2025-01-20 using wiktextract (0c0c1f1 and 4230888). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.

If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.