See compositum in All languages combined, or Wiktionary
{ "etymology_templates": [ { "args": { "1": "en", "2": "la", "3": "compositum" }, "expansion": "Latin compositum", "name": "der" } ], "etymology_text": "From Latin compositum.", "forms": [ { "form": "compositums", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "compositum (plural compositums)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ { "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w" }, { "kind": "other", "name": "Entries with translation boxes", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with 2 entries", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with entries", "parents": [], "source": "w" }, { "kind": "topical", "langcode": "en", "name": "Algebra", "orig": "en:Algebra", "parents": [ "Mathematics", "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" }, { "_dis": "92 2 2 3 1", "kind": "other", "name": "Pages with 2 entries", "parents": [], "source": "w+disamb" }, { "_dis": "93 2 2 2 1", "kind": "other", "name": "Pages with entries", "parents": [], "source": "w+disamb" } ], "examples": [ { "text": "1998, Iain T. Adamson (translator), David Hilbert, The Theory of Algebraic Number Fields, [1897, D. Hilbert, Zahlbericht], Springer, page 98,\nOf particular interest is the case in which the discriminants of the fields forming the compositum are relatively prime." }, { "ref": "2004, Dinesh S. Thakur, Function Field Arithmetic, World Scientific, page 81:", "text": "For #x5C;Q, we get the maximal abelian extension by adjoining all roots of unity, i.e., taking compositum of all m-th cyclotomic fields (this is the famous Kronecker-Weber theorem).", "type": "quote" }, { "ref": "2005, T. Y. Lam, Introduction to Quadratic Forms over Fields, American Mathematical Society, page 333:", "text": "This is then just the field compositum of all the quadratic extensions F(#x5C;sqrt#x7B;a#x5F;i#x7D;) in the algebraic closure of F.", "type": "quote" } ], "glosses": [ "Given a field extension F/K and subextensions A and B, the smallest subextension that contains both A and B." ], "id": "en-compositum-en-noun-9Anj7Jc~", "links": [ [ "algebra", "algebra" ], [ "field extension", "field extension" ], [ "subextension", "subextension" ] ], "qualifier": "field theory", "raw_glosses": [ "(algebra, field theory) Given a field extension F/K and subextensions A and B, the smallest subextension that contains both A and B." ], "synonyms": [ { "sense": "smallest subextension of a given field extension that contains two given subextensions", "word": "field compositum" } ], "topics": [ "algebra", "mathematics", "sciences" ] } ], "sounds": [ { "audio": "LL-Q1860 (eng)-Flame, not lame-compositum.wav", "mp3_url": "https://upload.wikimedia.org/wikipedia/commons/transcoded/c/cd/LL-Q1860_%28eng%29-Flame%2C_not_lame-compositum.wav/LL-Q1860_%28eng%29-Flame%2C_not_lame-compositum.wav.mp3", "ogg_url": "https://upload.wikimedia.org/wikipedia/commons/transcoded/c/cd/LL-Q1860_%28eng%29-Flame%2C_not_lame-compositum.wav/LL-Q1860_%28eng%29-Flame%2C_not_lame-compositum.wav.ogg" } ], "word": "compositum" }
{ "categories": [ "Pages with 2 entries", "Pages with entries" ], "etymology_templates": [ { "args": { "1": "en", "2": "la", "3": "compositum" }, "expansion": "Latin compositum", "name": "der" } ], "etymology_text": "From Latin compositum.", "forms": [ { "form": "compositums", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "compositum (plural compositums)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ "English countable nouns", "English entries with incorrect language header", "English lemmas", "English nouns", "English terms derived from Latin", "English terms with quotations", "Entries with translation boxes", "Pages with 2 entries", "Pages with entries", "en:Algebra" ], "examples": [ { "text": "1998, Iain T. Adamson (translator), David Hilbert, The Theory of Algebraic Number Fields, [1897, D. Hilbert, Zahlbericht], Springer, page 98,\nOf particular interest is the case in which the discriminants of the fields forming the compositum are relatively prime." }, { "ref": "2004, Dinesh S. Thakur, Function Field Arithmetic, World Scientific, page 81:", "text": "For #x5C;Q, we get the maximal abelian extension by adjoining all roots of unity, i.e., taking compositum of all m-th cyclotomic fields (this is the famous Kronecker-Weber theorem).", "type": "quote" }, { "ref": "2005, T. Y. Lam, Introduction to Quadratic Forms over Fields, American Mathematical Society, page 333:", "text": "This is then just the field compositum of all the quadratic extensions F(#x5C;sqrt#x7B;a#x5F;i#x7D;) in the algebraic closure of F.", "type": "quote" } ], "glosses": [ "Given a field extension F/K and subextensions A and B, the smallest subextension that contains both A and B." ], "links": [ [ "algebra", "algebra" ], [ "field extension", "field extension" ], [ "subextension", "subextension" ] ], "qualifier": "field theory", "raw_glosses": [ "(algebra, field theory) Given a field extension F/K and subextensions A and B, the smallest subextension that contains both A and B." ], "topics": [ "algebra", "mathematics", "sciences" ] } ], "sounds": [ { "audio": "LL-Q1860 (eng)-Flame, not lame-compositum.wav", "mp3_url": "https://upload.wikimedia.org/wikipedia/commons/transcoded/c/cd/LL-Q1860_%28eng%29-Flame%2C_not_lame-compositum.wav/LL-Q1860_%28eng%29-Flame%2C_not_lame-compositum.wav.mp3", "ogg_url": "https://upload.wikimedia.org/wikipedia/commons/transcoded/c/cd/LL-Q1860_%28eng%29-Flame%2C_not_lame-compositum.wav/LL-Q1860_%28eng%29-Flame%2C_not_lame-compositum.wav.ogg" } ], "synonyms": [ { "sense": "smallest subextension of a given field extension that contains two given subextensions", "word": "field compositum" } ], "word": "compositum" }
Download raw JSONL data for compositum meaning in English (2.6kB)
This page is a part of the kaikki.org machine-readable English dictionary. This dictionary is based on structured data extracted on 2024-12-03 from the enwiktionary dump dated 2024-11-21 using wiktextract (94ba7e1 and 5dea2a6). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.