"commutant" meaning in English

See commutant in All languages combined, or Wiktionary

Noun

Audio: LL-Q1860 (eng)-Flame, not lame-commutant.wav Forms: commutants [plural]
Etymology: From commute + -ant. Etymology templates: {{suffix|en|commute|ant}} commute + -ant Head templates: {{en-noun}} commutant (plural commutants)
  1. (algebra, logic) The subset of all elements of a semigroup that commute with the elements of a given subset Categories (topical): Algebra, Logic Derived forms: bicommutant, commutant lifting theorem

Inflected forms

{
  "etymology_templates": [
    {
      "args": {
        "1": "en",
        "2": "commute",
        "3": "ant"
      },
      "expansion": "commute + -ant",
      "name": "suffix"
    }
  ],
  "etymology_text": "From commute + -ant.",
  "forms": [
    {
      "form": "commutants",
      "tags": [
        "plural"
      ]
    }
  ],
  "head_templates": [
    {
      "args": {},
      "expansion": "commutant (plural commutants)",
      "name": "en-noun"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "noun",
  "senses": [
    {
      "categories": [
        {
          "kind": "other",
          "name": "English entries with incorrect language header",
          "parents": [
            "Entries with incorrect language header",
            "Entry maintenance"
          ],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "English terms suffixed with -ant",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with 3 entries",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with entries",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "topical",
          "langcode": "en",
          "name": "Algebra",
          "orig": "en:Algebra",
          "parents": [
            "Mathematics",
            "Formal sciences",
            "Sciences",
            "All topics",
            "Fundamental"
          ],
          "source": "w"
        },
        {
          "kind": "topical",
          "langcode": "en",
          "name": "Logic",
          "orig": "en:Logic",
          "parents": [
            "Formal sciences",
            "Philosophy",
            "Sciences",
            "All topics",
            "Fundamental"
          ],
          "source": "w"
        }
      ],
      "derived": [
        {
          "word": "bicommutant"
        },
        {
          "word": "commutant lifting theorem"
        }
      ],
      "examples": [
        {
          "ref": "2008 September 27, John Earman, “Superselection Rules for Philosophers”, in Erkenntnis, volume 69, number 3, →DOI:",
          "text": "The basic mathematical entity to be used here in elucidating the different senses of superselection rules is a von Neumann algebra #x7B;#x5C;mathfrak#x7B;M",
          "type": "quote"
        }
      ],
      "glosses": [
        "The subset of all elements of a semigroup that commute with the elements of a given subset"
      ],
      "id": "en-commutant-en-noun-8OxM~~8g",
      "links": [
        [
          "algebra",
          "algebra"
        ],
        [
          "logic",
          "logic"
        ],
        [
          "semigroup",
          "semigroup"
        ],
        [
          "commute",
          "commute"
        ]
      ],
      "raw_glosses": [
        "(algebra, logic) The subset of all elements of a semigroup that commute with the elements of a given subset"
      ],
      "topics": [
        "algebra",
        "human-sciences",
        "logic",
        "mathematics",
        "philosophy",
        "sciences"
      ]
    }
  ],
  "sounds": [
    {
      "audio": "LL-Q1860 (eng)-Flame, not lame-commutant.wav",
      "mp3_url": "https://upload.wikimedia.org/wikipedia/commons/transcoded/4/4c/LL-Q1860_%28eng%29-Flame%2C_not_lame-commutant.wav/LL-Q1860_%28eng%29-Flame%2C_not_lame-commutant.wav.mp3",
      "ogg_url": "https://upload.wikimedia.org/wikipedia/commons/transcoded/4/4c/LL-Q1860_%28eng%29-Flame%2C_not_lame-commutant.wav/LL-Q1860_%28eng%29-Flame%2C_not_lame-commutant.wav.ogg"
    }
  ],
  "word": "commutant"
}
{
  "derived": [
    {
      "word": "bicommutant"
    },
    {
      "word": "commutant lifting theorem"
    }
  ],
  "etymology_templates": [
    {
      "args": {
        "1": "en",
        "2": "commute",
        "3": "ant"
      },
      "expansion": "commute + -ant",
      "name": "suffix"
    }
  ],
  "etymology_text": "From commute + -ant.",
  "forms": [
    {
      "form": "commutants",
      "tags": [
        "plural"
      ]
    }
  ],
  "head_templates": [
    {
      "args": {},
      "expansion": "commutant (plural commutants)",
      "name": "en-noun"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "noun",
  "senses": [
    {
      "categories": [
        "English countable nouns",
        "English entries with incorrect language header",
        "English lemmas",
        "English nouns",
        "English terms suffixed with -ant",
        "English terms with quotations",
        "Pages with 3 entries",
        "Pages with entries",
        "en:Algebra",
        "en:Logic"
      ],
      "examples": [
        {
          "ref": "2008 September 27, John Earman, “Superselection Rules for Philosophers”, in Erkenntnis, volume 69, number 3, →DOI:",
          "text": "The basic mathematical entity to be used here in elucidating the different senses of superselection rules is a von Neumann algebra #x7B;#x5C;mathfrak#x7B;M",
          "type": "quote"
        }
      ],
      "glosses": [
        "The subset of all elements of a semigroup that commute with the elements of a given subset"
      ],
      "links": [
        [
          "algebra",
          "algebra"
        ],
        [
          "logic",
          "logic"
        ],
        [
          "semigroup",
          "semigroup"
        ],
        [
          "commute",
          "commute"
        ]
      ],
      "raw_glosses": [
        "(algebra, logic) The subset of all elements of a semigroup that commute with the elements of a given subset"
      ],
      "topics": [
        "algebra",
        "human-sciences",
        "logic",
        "mathematics",
        "philosophy",
        "sciences"
      ]
    }
  ],
  "sounds": [
    {
      "audio": "LL-Q1860 (eng)-Flame, not lame-commutant.wav",
      "mp3_url": "https://upload.wikimedia.org/wikipedia/commons/transcoded/4/4c/LL-Q1860_%28eng%29-Flame%2C_not_lame-commutant.wav/LL-Q1860_%28eng%29-Flame%2C_not_lame-commutant.wav.mp3",
      "ogg_url": "https://upload.wikimedia.org/wikipedia/commons/transcoded/4/4c/LL-Q1860_%28eng%29-Flame%2C_not_lame-commutant.wav/LL-Q1860_%28eng%29-Flame%2C_not_lame-commutant.wav.ogg"
    }
  ],
  "word": "commutant"
}

Download raw JSONL data for commutant meaning in English (1.9kB)

{
  "called_from": "parser/304",
  "msg": "HTML tag <math> not properly closed",
  "path": [
    "commutant"
  ],
  "section": "English",
  "subsection": "noun",
  "title": "commutant",
  "trace": "started on line 1, detected on line 1"
}

This page is a part of the kaikki.org machine-readable English dictionary. This dictionary is based on structured data extracted on 2024-12-21 from the enwiktionary dump dated 2024-12-04 using wiktextract (d8cb2f3 and 4e554ae). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.

If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.