See codomain in All languages combined, or Wiktionary
{ "antonyms": [ { "sense": "antonym(s) of “target set of a function”", "word": "domain" } ], "etymology_templates": [ { "args": { "1": "en", "2": "co", "3": "domain" }, "expansion": "co- + domain", "name": "prefix" } ], "etymology_text": "From co- + domain.", "forms": [ { "form": "codomains", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "codomain (plural codomains)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ { "kind": "topical", "langcode": "en", "name": "Mathematical analysis", "orig": "en:Mathematical analysis", "parents": [ "Mathematics", "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" }, { "kind": "topical", "langcode": "en", "name": "Mathematics", "orig": "en:Mathematics", "parents": [ "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" } ], "examples": [ { "ref": "1994, Richard A. Holmgren, A First Course in Discrete Dynamical Systems, Springer, page 11:", "text": "Definition 2.5. A function is onto if each element of the codomain has at least one element of the domain assigned to it. In other words, a function is onto if the range equals the codomain.", "type": "quote" }, { "text": "2006, Robert L. Causey, Logic, Sets, and Recursion, 2nd Edition, Jones & Bartlett Learning, page 192,\nOnce we have described f as a function from A to B, by convention we will call B the codomain, even though other sets, of which B is a subset, could have been used. […] If y is an element of the codomain, then y∈ mathit Img(f,A) iff there is some x in the domain such that f maps x to y." }, { "ref": "2017, Alan Garfinkel, Jane Shevtsov, Yina Guo, Modeling Life: The Mathematics of Biological Systems, Springer, page 12:", "text": "For example, the codomain of g(X)#x3D;X³ consists of all real numbers. A function links each element in its domain to some element in its codomain. Each domain element is linked to exactly one codomain element.", "type": "quote" } ], "glosses": [ "The target set into which a function is formally defined to map elements of its domain; the set denoted Y in the notation f : X → Y." ], "id": "en-codomain-en-noun-7iHJTVYH", "links": [ [ "mathematics", "mathematics" ], [ "mathematical analysis", "mathematical analysis" ], [ "function", "function" ], [ "domain", "domain" ] ], "raw_glosses": [ "(mathematics, mathematical analysis) The target set into which a function is formally defined to map elements of its domain; the set denoted Y in the notation f : X → Y." ], "topics": [ "mathematical-analysis", "mathematics", "sciences" ] }, { "categories": [ { "kind": "topical", "langcode": "en", "name": "Mathematical analysis", "orig": "en:Mathematical analysis", "parents": [ "Mathematics", "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" }, { "kind": "topical", "langcode": "en", "name": "Mathematics", "orig": "en:Mathematics", "parents": [ "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" }, { "_dis": "41 59", "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w+disamb" }, { "_dis": "35 65", "kind": "other", "name": "English terms prefixed with co-", "parents": [], "source": "w+disamb" }, { "_dis": "31 69", "kind": "other", "name": "Entries with translation boxes", "parents": [], "source": "w+disamb" }, { "_dis": "33 67", "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w+disamb" }, { "_dis": "23 77", "kind": "other", "name": "Pages with entries", "parents": [], "source": "w+disamb" }, { "_dis": "22 78", "kind": "other", "name": "Terms with Czech translations", "parents": [], "source": "w+disamb" }, { "_dis": "15 85", "kind": "other", "name": "Terms with Danish translations", "parents": [], "source": "w+disamb" }, { "_dis": "18 82", "kind": "other", "name": "Terms with German translations", "parents": [], "source": "w+disamb" }, { "_dis": "20 80", "kind": "other", "name": "Terms with Icelandic translations", "parents": [], "source": "w+disamb" }, { "_dis": "18 82", "kind": "other", "name": "Terms with Japanese translations", "parents": [], "source": "w+disamb" }, { "_dis": "21 79", "kind": "other", "name": "Terms with Polish translations", "parents": [], "source": "w+disamb" }, { "_dis": "18 82", "kind": "other", "name": "Terms with Portuguese translations", "parents": [], "source": "w+disamb" }, { "_dis": "17 83", "kind": "other", "name": "Terms with Swedish translations", "parents": [], "source": "w+disamb" }, { "_dis": "19 81", "kind": "topical", "langcode": "en", "name": "Category theory", "orig": "en:Category theory", "parents": [ "Mathematics", "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w+disamb" }, { "_dis": "27 73", "kind": "topical", "langcode": "en", "name": "Set theory", "orig": "en:Set theory", "parents": [ "Mathematics", "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w+disamb" } ], "glosses": [ "The target set into which a function is formally defined to map elements of its domain; the set denoted Y in the notation f : X → Y.", "The set B." ], "id": "en-codomain-en-noun-qcfqpUUt", "links": [ [ "mathematics", "mathematics" ], [ "mathematical analysis", "mathematical analysis" ], [ "function", "function" ], [ "domain", "domain" ], [ "binary relation", "binary relation" ] ], "raw_glosses": [ "(mathematics, mathematical analysis) The target set into which a function is formally defined to map elements of its domain; the set denoted Y in the notation f : X → Y.", "(more generally, of a binary relation R between A and B) The set B." ], "raw_tags": [ "of a binary relation R between A and B" ], "tags": [ "broadly" ], "topics": [ "mathematical-analysis", "mathematics", "sciences" ] } ], "sounds": [ { "ipa": "/ˌkoʊ.doʊˈmeɪn/", "tags": [ "US" ] }, { "audio": "En-us-codomain.ogg", "mp3_url": "https://upload.wikimedia.org/wikipedia/commons/transcoded/0/03/En-us-codomain.ogg/En-us-codomain.ogg.mp3", "ogg_url": "https://upload.wikimedia.org/wikipedia/commons/0/03/En-us-codomain.ogg" } ], "synonyms": [ { "_dis1": "50 50", "sense": "target set of a function", "word": "range" } ], "translations": [ { "_dis1": "50 50", "code": "cs", "lang": "Czech", "sense": "target set of a function", "tags": [ "masculine" ], "word": "obor hodnot" }, { "_dis1": "50 50", "code": "da", "lang": "Danish", "sense": "target set of a function", "tags": [ "common-gender" ], "word": "dispositionsmængde" }, { "_dis1": "50 50", "code": "de", "lang": "German", "sense": "target set of a function", "tags": [ "feminine" ], "word": "Zielmenge" }, { "_dis1": "50 50", "code": "is", "lang": "Icelandic", "sense": "target set of a function", "tags": [ "neuter" ], "word": "aðmengi" }, { "_dis1": "50 50", "code": "is", "lang": "Icelandic", "sense": "target set of a function", "tags": [ "neuter" ], "word": "ítak" }, { "_dis1": "50 50", "code": "is", "lang": "Icelandic", "sense": "target set of a function", "tags": [ "neuter" ], "word": "bakmengi" }, { "_dis1": "50 50", "alt": "しゅういき", "code": "ja", "lang": "Japanese", "roman": "shūiki", "sense": "target set of a function", "word": "終域" }, { "_dis1": "50 50", "code": "pl", "lang": "Polish", "sense": "target set of a function", "tags": [ "feminine" ], "word": "przeciwdziedzina" }, { "_dis1": "50 50", "code": "pt", "lang": "Portuguese", "sense": "target set of a function", "tags": [ "masculine" ], "word": "contradomínio" }, { "_dis1": "50 50", "code": "ru", "lang": "Russian", "sense": "target set of a function", "word": "область значений" }, { "_dis1": "50 50", "code": "sv", "lang": "Swedish", "sense": "target set of a function", "tags": [ "common-gender" ], "word": "målmängd" } ], "wikipedia": [ "codomain" ], "word": "codomain" }
{ "antonyms": [ { "sense": "antonym(s) of “target set of a function”", "word": "domain" } ], "categories": [ "English countable nouns", "English entries with incorrect language header", "English lemmas", "English nouns", "English terms prefixed with co-", "Entries with translation boxes", "Pages with 1 entry", "Pages with entries", "Terms with Czech translations", "Terms with Danish translations", "Terms with German translations", "Terms with Icelandic translations", "Terms with Japanese translations", "Terms with Polish translations", "Terms with Portuguese translations", "Terms with Swedish translations", "en:Category theory", "en:Set theory" ], "etymology_templates": [ { "args": { "1": "en", "2": "co", "3": "domain" }, "expansion": "co- + domain", "name": "prefix" } ], "etymology_text": "From co- + domain.", "forms": [ { "form": "codomains", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "codomain (plural codomains)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ "English terms with quotations", "en:Mathematical analysis", "en:Mathematics" ], "examples": [ { "ref": "1994, Richard A. Holmgren, A First Course in Discrete Dynamical Systems, Springer, page 11:", "text": "Definition 2.5. A function is onto if each element of the codomain has at least one element of the domain assigned to it. In other words, a function is onto if the range equals the codomain.", "type": "quote" }, { "text": "2006, Robert L. Causey, Logic, Sets, and Recursion, 2nd Edition, Jones & Bartlett Learning, page 192,\nOnce we have described f as a function from A to B, by convention we will call B the codomain, even though other sets, of which B is a subset, could have been used. […] If y is an element of the codomain, then y∈ mathit Img(f,A) iff there is some x in the domain such that f maps x to y." }, { "ref": "2017, Alan Garfinkel, Jane Shevtsov, Yina Guo, Modeling Life: The Mathematics of Biological Systems, Springer, page 12:", "text": "For example, the codomain of g(X)#x3D;X³ consists of all real numbers. A function links each element in its domain to some element in its codomain. Each domain element is linked to exactly one codomain element.", "type": "quote" } ], "glosses": [ "The target set into which a function is formally defined to map elements of its domain; the set denoted Y in the notation f : X → Y." ], "links": [ [ "mathematics", "mathematics" ], [ "mathematical analysis", "mathematical analysis" ], [ "function", "function" ], [ "domain", "domain" ] ], "raw_glosses": [ "(mathematics, mathematical analysis) The target set into which a function is formally defined to map elements of its domain; the set denoted Y in the notation f : X → Y." ], "topics": [ "mathematical-analysis", "mathematics", "sciences" ] }, { "categories": [ "English terms with quotations", "en:Mathematical analysis", "en:Mathematics" ], "glosses": [ "The target set into which a function is formally defined to map elements of its domain; the set denoted Y in the notation f : X → Y.", "The set B." ], "links": [ [ "mathematics", "mathematics" ], [ "mathematical analysis", "mathematical analysis" ], [ "function", "function" ], [ "domain", "domain" ], [ "binary relation", "binary relation" ] ], "raw_glosses": [ "(mathematics, mathematical analysis) The target set into which a function is formally defined to map elements of its domain; the set denoted Y in the notation f : X → Y.", "(more generally, of a binary relation R between A and B) The set B." ], "raw_tags": [ "of a binary relation R between A and B" ], "tags": [ "broadly" ], "topics": [ "mathematical-analysis", "mathematics", "sciences" ] } ], "sounds": [ { "ipa": "/ˌkoʊ.doʊˈmeɪn/", "tags": [ "US" ] }, { "audio": "En-us-codomain.ogg", "mp3_url": "https://upload.wikimedia.org/wikipedia/commons/transcoded/0/03/En-us-codomain.ogg/En-us-codomain.ogg.mp3", "ogg_url": "https://upload.wikimedia.org/wikipedia/commons/0/03/En-us-codomain.ogg" } ], "synonyms": [ { "sense": "target set of a function", "word": "range" } ], "translations": [ { "code": "cs", "lang": "Czech", "sense": "target set of a function", "tags": [ "masculine" ], "word": "obor hodnot" }, { "code": "da", "lang": "Danish", "sense": "target set of a function", "tags": [ "common-gender" ], "word": "dispositionsmængde" }, { "code": "de", "lang": "German", "sense": "target set of a function", "tags": [ "feminine" ], "word": "Zielmenge" }, { "code": "is", "lang": "Icelandic", "sense": "target set of a function", "tags": [ "neuter" ], "word": "aðmengi" }, { "code": "is", "lang": "Icelandic", "sense": "target set of a function", "tags": [ "neuter" ], "word": "ítak" }, { "code": "is", "lang": "Icelandic", "sense": "target set of a function", "tags": [ "neuter" ], "word": "bakmengi" }, { "alt": "しゅういき", "code": "ja", "lang": "Japanese", "roman": "shūiki", "sense": "target set of a function", "word": "終域" }, { "code": "pl", "lang": "Polish", "sense": "target set of a function", "tags": [ "feminine" ], "word": "przeciwdziedzina" }, { "code": "pt", "lang": "Portuguese", "sense": "target set of a function", "tags": [ "masculine" ], "word": "contradomínio" }, { "code": "ru", "lang": "Russian", "sense": "target set of a function", "word": "область значений" }, { "code": "sv", "lang": "Swedish", "sense": "target set of a function", "tags": [ "common-gender" ], "word": "målmängd" } ], "wikipedia": [ "codomain" ], "word": "codomain" }
Download raw JSONL data for codomain meaning in English (5.3kB)
This page is a part of the kaikki.org machine-readable English dictionary. This dictionary is based on structured data extracted on 2024-12-15 from the enwiktionary dump dated 2024-12-04 using wiktextract (8a39820 and 4401a4c). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.