"biinvariant" meaning in English

See biinvariant in All languages combined, or Wiktionary

Adjective

Etymology: From bi- + invariant. Etymology templates: {{prefix|en|bi|invariant}} bi- + invariant Head templates: {{en-adj|-}} biinvariant (not comparable)
  1. (mathematics) Both left-invariant and right-invariant. Tags: not-comparable Categories (topical): Mathematics
{
  "etymology_templates": [
    {
      "args": {
        "1": "en",
        "2": "bi",
        "3": "invariant"
      },
      "expansion": "bi- + invariant",
      "name": "prefix"
    }
  ],
  "etymology_text": "From bi- + invariant.",
  "head_templates": [
    {
      "args": {
        "1": "-"
      },
      "expansion": "biinvariant (not comparable)",
      "name": "en-adj"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "adj",
  "senses": [
    {
      "categories": [
        {
          "kind": "other",
          "name": "English entries with incorrect language header",
          "parents": [
            "Entries with incorrect language header",
            "Entry maintenance"
          ],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "English terms prefixed with bi-",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with 1 entry",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with entries",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "topical",
          "langcode": "en",
          "name": "Mathematics",
          "orig": "en:Mathematics",
          "parents": [
            "Formal sciences",
            "Sciences",
            "All topics",
            "Fundamental"
          ],
          "source": "w"
        }
      ],
      "examples": [
        {
          "ref": "2015, Valera Berestovskii, Irina Zubareva, Victor Svirkin, “The spectrum of the Laplace operator on connected compact simple Lie groups of rank 3”, in arXiv:",
          "text": "In this paper we give explicit calculations of the Laplace operator's spectrum for smooth real or complex functions on all connected compact simple Lie groups of rank 3 with biinvariant Riemannian metric and establish a connection of these formulas with the number theory and ternary and binary quadratic forms..",
          "type": "quote"
        }
      ],
      "glosses": [
        "Both left-invariant and right-invariant."
      ],
      "id": "en-biinvariant-en-adj-6tn4jQ35",
      "links": [
        [
          "mathematics",
          "mathematics"
        ]
      ],
      "raw_glosses": [
        "(mathematics) Both left-invariant and right-invariant."
      ],
      "tags": [
        "not-comparable"
      ],
      "topics": [
        "mathematics",
        "sciences"
      ]
    }
  ],
  "word": "biinvariant"
}
{
  "etymology_templates": [
    {
      "args": {
        "1": "en",
        "2": "bi",
        "3": "invariant"
      },
      "expansion": "bi- + invariant",
      "name": "prefix"
    }
  ],
  "etymology_text": "From bi- + invariant.",
  "head_templates": [
    {
      "args": {
        "1": "-"
      },
      "expansion": "biinvariant (not comparable)",
      "name": "en-adj"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "adj",
  "senses": [
    {
      "categories": [
        "English adjectives",
        "English entries with incorrect language header",
        "English lemmas",
        "English terms prefixed with bi-",
        "English terms with quotations",
        "English uncomparable adjectives",
        "Pages with 1 entry",
        "Pages with entries",
        "en:Mathematics"
      ],
      "examples": [
        {
          "ref": "2015, Valera Berestovskii, Irina Zubareva, Victor Svirkin, “The spectrum of the Laplace operator on connected compact simple Lie groups of rank 3”, in arXiv:",
          "text": "In this paper we give explicit calculations of the Laplace operator's spectrum for smooth real or complex functions on all connected compact simple Lie groups of rank 3 with biinvariant Riemannian metric and establish a connection of these formulas with the number theory and ternary and binary quadratic forms..",
          "type": "quote"
        }
      ],
      "glosses": [
        "Both left-invariant and right-invariant."
      ],
      "links": [
        [
          "mathematics",
          "mathematics"
        ]
      ],
      "raw_glosses": [
        "(mathematics) Both left-invariant and right-invariant."
      ],
      "tags": [
        "not-comparable"
      ],
      "topics": [
        "mathematics",
        "sciences"
      ]
    }
  ],
  "word": "biinvariant"
}

Download raw JSONL data for biinvariant meaning in English (1.4kB)


This page is a part of the kaikki.org machine-readable English dictionary. This dictionary is based on structured data extracted on 2025-01-08 from the enwiktionary dump dated 2025-01-01 using wiktextract (9a96ef4 and 4ed51a5). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.

If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.