"apeirohedron" meaning in English

See apeirohedron in All languages combined, or Wiktionary

Noun

IPA: /əˌpiːɹɵˈhiːdɹən/, /əˌpeɪ̯ɹɵˈhiːdɹən/ Forms: apeirohedrons [plural], apeirohedra [plural]
Etymology: From apeiro- + -hedron. Etymology templates: {{confix|en|apeiro|hedron}} apeiro- + -hedron Head templates: {{en-noun|s|apeirohedra}} apeirohedron (plural apeirohedrons or apeirohedra)
  1. (mathematics, geometry) A polyhedron with an infinite number of faces. Wikipedia link: en:skew apeirohedron Categories (topical): Geometry, Mathematics, Polyhedra Hyponyms: mucube, muoctahedron, mutetrahedron Related terms: apeirogon

Inflected forms

{
  "etymology_templates": [
    {
      "args": {
        "1": "en",
        "2": "apeiro",
        "3": "hedron"
      },
      "expansion": "apeiro- + -hedron",
      "name": "confix"
    }
  ],
  "etymology_text": "From apeiro- + -hedron.",
  "forms": [
    {
      "form": "apeirohedrons",
      "tags": [
        "plural"
      ]
    },
    {
      "form": "apeirohedra",
      "tags": [
        "plural"
      ]
    }
  ],
  "head_templates": [
    {
      "args": {
        "1": "s",
        "2": "apeirohedra"
      },
      "expansion": "apeirohedron (plural apeirohedrons or apeirohedra)",
      "name": "en-noun"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "noun",
  "senses": [
    {
      "categories": [
        {
          "kind": "other",
          "name": "English entries with incorrect language header",
          "parents": [
            "Entries with incorrect language header",
            "Entry maintenance"
          ],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "English terms prefixed with apeiro-",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "English terms suffixed with -hedron",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with 1 entry",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with entries",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "topical",
          "langcode": "en",
          "name": "Geometry",
          "orig": "en:Geometry",
          "parents": [
            "Mathematics",
            "Formal sciences",
            "Sciences",
            "All topics",
            "Fundamental"
          ],
          "source": "w"
        },
        {
          "kind": "other",
          "langcode": "en",
          "name": "Infinity",
          "orig": "en:Infinity",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "topical",
          "langcode": "en",
          "name": "Mathematics",
          "orig": "en:Mathematics",
          "parents": [
            "Formal sciences",
            "Sciences",
            "All topics",
            "Fundamental"
          ],
          "source": "w"
        },
        {
          "kind": "other",
          "langcode": "en",
          "name": "Non-Euclidean geometry",
          "orig": "en:Non-Euclidean geometry",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "topical",
          "langcode": "en",
          "name": "Polyhedra",
          "orig": "en:Polyhedra",
          "parents": [
            "Shapes",
            "Geometry",
            "Mathematics",
            "Formal sciences",
            "Sciences",
            "All topics",
            "Fundamental"
          ],
          "source": "w"
        },
        {
          "kind": "other",
          "langcode": "en",
          "name": "Shapes in non-Euclidean geometry",
          "orig": "en:Shapes in non-Euclidean geometry",
          "parents": [],
          "source": "w"
        }
      ],
      "examples": [
        {
          "ref": "2014, Daniel Pellicer with Egon Schulte, “Polygonal Complexes and Graphs for Crystallographic Groups”, in Robert Connelly, Asia Ivić Weiss, Walter Whiteley, editors, Rigidity and Symmetry, New York, N.Y.: Springer, →ISBN, page 331:",
          "text": "There are exactly 12 regular apeirohedra that in some sense are reducible and have components that are regular figures of dimensions 1 and 2. These apeirohedra are blends of a planar regular apeirohedron, and a line segment { } or linear apeirogon {∞}. This explains why there are 12 = 6·2 blended (or non-pure) apeirohedra. For example, the blend of the standard square tessellation {4,4} and the infinite apeirogon {∞}, denoted {4,4}#{∞}, is an apeirohedron whose faces are helical apeirogons (over squares), rising above the squares of {4,4}, such that 4 meet at each vertex; the orthogonal projections of {4,4}#{∞} onto their component subspaces recover the original components, the square tessellation and the linear apeirogon.",
          "type": "quote"
        }
      ],
      "glosses": [
        "A polyhedron with an infinite number of faces."
      ],
      "hyponyms": [
        {
          "word": "mucube"
        },
        {
          "word": "muoctahedron"
        },
        {
          "word": "mutetrahedron"
        }
      ],
      "id": "en-apeirohedron-en-noun-~F3WoQdN",
      "links": [
        [
          "mathematics",
          "mathematics"
        ],
        [
          "geometry",
          "geometry"
        ],
        [
          "polyhedron",
          "polyhedron#English"
        ]
      ],
      "raw_glosses": [
        "(mathematics, geometry) A polyhedron with an infinite number of faces."
      ],
      "related": [
        {
          "word": "apeirogon"
        }
      ],
      "topics": [
        "geometry",
        "mathematics",
        "sciences"
      ],
      "wikipedia": [
        "en:skew apeirohedron"
      ]
    }
  ],
  "sounds": [
    {
      "ipa": "/əˌpiːɹɵˈhiːdɹən/"
    },
    {
      "ipa": "/əˌpeɪ̯ɹɵˈhiːdɹən/"
    }
  ],
  "word": "apeirohedron"
}
{
  "etymology_templates": [
    {
      "args": {
        "1": "en",
        "2": "apeiro",
        "3": "hedron"
      },
      "expansion": "apeiro- + -hedron",
      "name": "confix"
    }
  ],
  "etymology_text": "From apeiro- + -hedron.",
  "forms": [
    {
      "form": "apeirohedrons",
      "tags": [
        "plural"
      ]
    },
    {
      "form": "apeirohedra",
      "tags": [
        "plural"
      ]
    }
  ],
  "head_templates": [
    {
      "args": {
        "1": "s",
        "2": "apeirohedra"
      },
      "expansion": "apeirohedron (plural apeirohedrons or apeirohedra)",
      "name": "en-noun"
    }
  ],
  "hyponyms": [
    {
      "word": "mucube"
    },
    {
      "word": "muoctahedron"
    },
    {
      "word": "mutetrahedron"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "noun",
  "related": [
    {
      "word": "apeirogon"
    }
  ],
  "senses": [
    {
      "categories": [
        "English countable nouns",
        "English entries with incorrect language header",
        "English lemmas",
        "English nouns",
        "English nouns with irregular plurals",
        "English terms prefixed with apeiro-",
        "English terms suffixed with -hedron",
        "English terms with quotations",
        "Pages with 1 entry",
        "Pages with entries",
        "en:Geometry",
        "en:Infinity",
        "en:Mathematics",
        "en:Non-Euclidean geometry",
        "en:Polyhedra",
        "en:Shapes in non-Euclidean geometry"
      ],
      "examples": [
        {
          "ref": "2014, Daniel Pellicer with Egon Schulte, “Polygonal Complexes and Graphs for Crystallographic Groups”, in Robert Connelly, Asia Ivić Weiss, Walter Whiteley, editors, Rigidity and Symmetry, New York, N.Y.: Springer, →ISBN, page 331:",
          "text": "There are exactly 12 regular apeirohedra that in some sense are reducible and have components that are regular figures of dimensions 1 and 2. These apeirohedra are blends of a planar regular apeirohedron, and a line segment { } or linear apeirogon {∞}. This explains why there are 12 = 6·2 blended (or non-pure) apeirohedra. For example, the blend of the standard square tessellation {4,4} and the infinite apeirogon {∞}, denoted {4,4}#{∞}, is an apeirohedron whose faces are helical apeirogons (over squares), rising above the squares of {4,4}, such that 4 meet at each vertex; the orthogonal projections of {4,4}#{∞} onto their component subspaces recover the original components, the square tessellation and the linear apeirogon.",
          "type": "quote"
        }
      ],
      "glosses": [
        "A polyhedron with an infinite number of faces."
      ],
      "links": [
        [
          "mathematics",
          "mathematics"
        ],
        [
          "geometry",
          "geometry"
        ],
        [
          "polyhedron",
          "polyhedron#English"
        ]
      ],
      "raw_glosses": [
        "(mathematics, geometry) A polyhedron with an infinite number of faces."
      ],
      "topics": [
        "geometry",
        "mathematics",
        "sciences"
      ],
      "wikipedia": [
        "en:skew apeirohedron"
      ]
    }
  ],
  "sounds": [
    {
      "ipa": "/əˌpiːɹɵˈhiːdɹən/"
    },
    {
      "ipa": "/əˌpeɪ̯ɹɵˈhiːdɹən/"
    }
  ],
  "word": "apeirohedron"
}

Download raw JSONL data for apeirohedron meaning in English (2.5kB)


This page is a part of the kaikki.org machine-readable English dictionary. This dictionary is based on structured data extracted on 2024-11-06 from the enwiktionary dump dated 2024-10-02 using wiktextract (fbeafe8 and 7f03c9b). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.

If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.