See Sierpinski number in All languages combined, or Wiktionary
{ "etymology_templates": [ { "args": { "1": "mathematician", "2": "", "3": "", "4": "", "5": "" }, "expansion": "mathematician", "name": "named-after/list" }, { "args": {}, "expansion": "|", "name": "!" }, { "args": { "1": "en", "2": "Wacław Sierpiński" }, "expansion": "Wacław Sierpiński", "name": "lang" }, { "args": { "1": "en", "2": "Wacław Sierpiński", "nat": "Polish", "occ": "mathematician", "wplink": "=" }, "expansion": "Named after Polish mathematician Wacław Sierpiński", "name": "named-after" } ], "etymology_text": "Named after Polish mathematician Wacław Sierpiński.", "forms": [ { "form": "Sierpinski numbers", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "Sierpinski number (plural Sierpinski numbers)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ { "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w" }, { "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with entries", "parents": [], "source": "w" }, { "kind": "topical", "langcode": "en", "name": "Number theory", "orig": "en:Number theory", "parents": [ "Mathematics", "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" } ], "glosses": [ "An odd natural number k such that k×2ⁿ+1 is composite for all natural numbers n." ], "id": "en-Sierpinski_number-en-noun-~8uFt583", "links": [ [ "number theory", "number theory" ], [ "odd", "odd" ], [ "natural number", "natural number" ], [ "composite", "composite number" ] ], "raw_glosses": [ "(number theory) An odd natural number k such that k×2ⁿ+1 is composite for all natural numbers n." ], "topics": [ "mathematics", "number-theory", "sciences" ], "wikipedia": [ "Sierpinski number" ] } ], "word": "Sierpinski number" }
{ "etymology_templates": [ { "args": { "1": "mathematician", "2": "", "3": "", "4": "", "5": "" }, "expansion": "mathematician", "name": "named-after/list" }, { "args": {}, "expansion": "|", "name": "!" }, { "args": { "1": "en", "2": "Wacław Sierpiński" }, "expansion": "Wacław Sierpiński", "name": "lang" }, { "args": { "1": "en", "2": "Wacław Sierpiński", "nat": "Polish", "occ": "mathematician", "wplink": "=" }, "expansion": "Named after Polish mathematician Wacław Sierpiński", "name": "named-after" } ], "etymology_text": "Named after Polish mathematician Wacław Sierpiński.", "forms": [ { "form": "Sierpinski numbers", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "Sierpinski number (plural Sierpinski numbers)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ "English countable nouns", "English entries with incorrect language header", "English eponyms", "English lemmas", "English multiword terms", "English nouns", "Pages with 1 entry", "Pages with entries", "en:Number theory" ], "glosses": [ "An odd natural number k such that k×2ⁿ+1 is composite for all natural numbers n." ], "links": [ [ "number theory", "number theory" ], [ "odd", "odd" ], [ "natural number", "natural number" ], [ "composite", "composite number" ] ], "raw_glosses": [ "(number theory) An odd natural number k such that k×2ⁿ+1 is composite for all natural numbers n." ], "topics": [ "mathematics", "number-theory", "sciences" ], "wikipedia": [ "Sierpinski number" ] } ], "word": "Sierpinski number" }
Download raw JSONL data for Sierpinski number meaning in English (1.5kB)
This page is a part of the kaikki.org machine-readable English dictionary. This dictionary is based on structured data extracted on 2025-02-08 from the enwiktionary dump dated 2025-02-02 using wiktextract (f90d964 and 9dbd323). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.