See Riemann integral in All languages combined, or Wiktionary
{ "etymology_text": "Named after Bernhard Riemann, a German mathematician.", "forms": [ { "form": "Riemann integrals", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "Riemann integral (plural Riemann integrals)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ { "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w" }, { "kind": "other", "name": "Entries with translation boxes", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with entries", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with French translations", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with German translations", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with Russian translations", "parents": [], "source": "w" }, { "kind": "topical", "langcode": "en", "name": "Mathematical analysis", "orig": "en:Mathematical analysis", "parents": [ "Mathematics", "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" } ], "glosses": [ "A type of integral whose computation involves dividing the interval of integration into smaller sub-intervals, summing sample values of the integrand inside those sub-intervals multiplied by their lengths, and letting the number of sub-intervals tend to infinity." ], "id": "en-Riemann_integral-en-noun-sHBfAjgn", "links": [ [ "mathematical analysis", "mathematical analysis" ], [ "integral", "integral#English" ], [ "interval", "interval#English" ], [ "integrand", "integrand#English" ], [ "infinity", "infinity#English" ] ], "raw_glosses": [ "(mathematical analysis) A type of integral whose computation involves dividing the interval of integration into smaller sub-intervals, summing sample values of the integrand inside those sub-intervals multiplied by their lengths, and letting the number of sub-intervals tend to infinity." ], "topics": [ "mathematical-analysis", "mathematics", "sciences" ], "translations": [ { "code": "fr", "lang": "French", "sense": "a type of integral", "tags": [ "feminine" ], "word": "intégrale de Riemann" }, { "code": "de", "lang": "German", "sense": "a type of integral", "tags": [ "neuter" ], "word": "Riemann-Integral" }, { "code": "de", "lang": "German", "sense": "a type of integral", "tags": [ "neuter" ], "word": "Riemannintegral" }, { "code": "de", "lang": "German", "sense": "a type of integral", "tags": [ "neuter" ], "word": "riemannsches Integral" }, { "code": "ru", "lang": "Russian", "roman": "integrál Rímana", "sense": "a type of integral", "tags": [ "masculine" ], "word": "интегра́л Ри́мана" } ], "wikipedia": [ "Riemann integral" ] } ], "word": "Riemann integral" }
{ "etymology_text": "Named after Bernhard Riemann, a German mathematician.", "forms": [ { "form": "Riemann integrals", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "Riemann integral (plural Riemann integrals)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ "English countable nouns", "English entries with incorrect language header", "English eponyms", "English lemmas", "English multiword terms", "English nouns", "Entries with translation boxes", "Pages with 1 entry", "Pages with entries", "Terms with French translations", "Terms with German translations", "Terms with Russian translations", "en:Mathematical analysis" ], "glosses": [ "A type of integral whose computation involves dividing the interval of integration into smaller sub-intervals, summing sample values of the integrand inside those sub-intervals multiplied by their lengths, and letting the number of sub-intervals tend to infinity." ], "links": [ [ "mathematical analysis", "mathematical analysis" ], [ "integral", "integral#English" ], [ "interval", "interval#English" ], [ "integrand", "integrand#English" ], [ "infinity", "infinity#English" ] ], "raw_glosses": [ "(mathematical analysis) A type of integral whose computation involves dividing the interval of integration into smaller sub-intervals, summing sample values of the integrand inside those sub-intervals multiplied by their lengths, and letting the number of sub-intervals tend to infinity." ], "topics": [ "mathematical-analysis", "mathematics", "sciences" ], "wikipedia": [ "Riemann integral" ] } ], "translations": [ { "code": "fr", "lang": "French", "sense": "a type of integral", "tags": [ "feminine" ], "word": "intégrale de Riemann" }, { "code": "de", "lang": "German", "sense": "a type of integral", "tags": [ "neuter" ], "word": "Riemann-Integral" }, { "code": "de", "lang": "German", "sense": "a type of integral", "tags": [ "neuter" ], "word": "Riemannintegral" }, { "code": "de", "lang": "German", "sense": "a type of integral", "tags": [ "neuter" ], "word": "riemannsches Integral" }, { "code": "ru", "lang": "Russian", "roman": "integrál Rímana", "sense": "a type of integral", "tags": [ "masculine" ], "word": "интегра́л Ри́мана" } ], "word": "Riemann integral" }
Download raw JSONL data for Riemann integral meaning in English (2.2kB)
This page is a part of the kaikki.org machine-readable English dictionary. This dictionary is based on structured data extracted on 2024-11-06 from the enwiktionary dump dated 2024-10-02 using wiktextract (fbeafe8 and 7f03c9b). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.