"Lie algebra" meaning in English

See Lie algebra in All languages combined, or Wiktionary

Noun

IPA: /liː.ældʒɨbɹə/ Forms: Lie algebras [plural]
Etymology: Named in honor of Sophus Lie (1842–1899), a Norwegian mathematician, in the 1930s by Hermann Weyl. Head templates: {{en-noun}} Lie algebra (plural Lie algebras)
  1. (mathematics) An algebra over a field whose bilinear product is alternating (or, equivalently for a bilinear product, anticommutative) and satisfies the Jacobi identity. Such a bilinear product is called a Lie bracket. Wikipedia link: Hermann Weyl, Lie algebra, Sophus Lie Derived forms: Lie bialgebra, Lie coalgebra, Lie superalgebra Translations (algebraic structure): алгебра на Ли (algebra na Li) [feminine] (Bulgarian), Lien algebra (Finnish), Lie-Algebra (German), リー代数 (rīdaisū) (Japanese), а́лгебра Ли (álgebra Li) [feminine] (Russian), Liejeva algebra [Roman, feminine] (Serbo-Croatian)

Inflected forms

{
  "etymology_text": "Named in honor of Sophus Lie (1842–1899), a Norwegian mathematician, in the 1930s by Hermann Weyl.",
  "forms": [
    {
      "form": "Lie algebras",
      "tags": [
        "plural"
      ]
    }
  ],
  "head_templates": [
    {
      "args": {},
      "expansion": "Lie algebra (plural Lie algebras)",
      "name": "en-noun"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "noun",
  "senses": [
    {
      "categories": [
        {
          "kind": "other",
          "name": "English entries with incorrect language header",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Entries with translation boxes",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with 1 entry",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with entries",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Serbo-Croatian terms with redundant script codes",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with Bulgarian translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with Finnish translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with German translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with Japanese translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with Russian translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with Serbo-Croatian translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "langcode": "en",
          "name": "Mathematics",
          "orig": "en:Mathematics",
          "parents": [],
          "source": "w"
        }
      ],
      "derived": [
        {
          "word": "Lie bialgebra"
        },
        {
          "word": "Lie coalgebra"
        },
        {
          "word": "Lie superalgebra"
        }
      ],
      "glosses": [
        "An algebra over a field whose bilinear product is alternating (or, equivalently for a bilinear product, anticommutative) and satisfies the Jacobi identity. Such a bilinear product is called a Lie bracket."
      ],
      "id": "en-Lie_algebra-en-noun-oMUaxd5A",
      "links": [
        [
          "mathematics",
          "mathematics"
        ],
        [
          "algebra over a field",
          "algebra over a field"
        ],
        [
          "bilinear",
          "bilinear"
        ],
        [
          "product",
          "product"
        ],
        [
          "alternating",
          "alternating"
        ],
        [
          "anticommutative",
          "anticommutative"
        ],
        [
          "Jacobi identity",
          "Jacobi identity"
        ],
        [
          "Lie bracket",
          "Lie bracket"
        ]
      ],
      "raw_glosses": [
        "(mathematics) An algebra over a field whose bilinear product is alternating (or, equivalently for a bilinear product, anticommutative) and satisfies the Jacobi identity. Such a bilinear product is called a Lie bracket."
      ],
      "topics": [
        "mathematics",
        "sciences"
      ],
      "translations": [
        {
          "code": "bg",
          "lang": "Bulgarian",
          "roman": "algebra na Li",
          "sense": "algebraic structure",
          "tags": [
            "feminine"
          ],
          "word": "алгебра на Ли"
        },
        {
          "code": "fi",
          "lang": "Finnish",
          "sense": "algebraic structure",
          "word": "Lien algebra"
        },
        {
          "code": "de",
          "lang": "German",
          "sense": "algebraic structure",
          "word": "Lie-Algebra"
        },
        {
          "code": "ja",
          "lang": "Japanese",
          "roman": "rīdaisū",
          "sense": "algebraic structure",
          "word": "リー代数"
        },
        {
          "code": "ru",
          "lang": "Russian",
          "roman": "álgebra Li",
          "sense": "algebraic structure",
          "tags": [
            "feminine"
          ],
          "word": "а́лгебра Ли"
        },
        {
          "code": "sh",
          "lang": "Serbo-Croatian",
          "sense": "algebraic structure",
          "tags": [
            "Roman",
            "feminine"
          ],
          "word": "Liejeva algebra"
        }
      ],
      "wikipedia": [
        "Hermann Weyl",
        "Lie algebra",
        "Sophus Lie"
      ]
    }
  ],
  "sounds": [
    {
      "ipa": "/liː.ældʒɨbɹə/"
    }
  ],
  "word": "Lie algebra"
}
{
  "derived": [
    {
      "word": "Lie bialgebra"
    },
    {
      "word": "Lie coalgebra"
    },
    {
      "word": "Lie superalgebra"
    }
  ],
  "etymology_text": "Named in honor of Sophus Lie (1842–1899), a Norwegian mathematician, in the 1930s by Hermann Weyl.",
  "forms": [
    {
      "form": "Lie algebras",
      "tags": [
        "plural"
      ]
    }
  ],
  "head_templates": [
    {
      "args": {},
      "expansion": "Lie algebra (plural Lie algebras)",
      "name": "en-noun"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "noun",
  "senses": [
    {
      "categories": [
        "English countable nouns",
        "English entries with incorrect language header",
        "English eponyms",
        "English lemmas",
        "English multiword terms",
        "English nouns",
        "Entries with translation boxes",
        "Pages with 1 entry",
        "Pages with entries",
        "Serbo-Croatian terms with redundant script codes",
        "Terms with Bulgarian translations",
        "Terms with Finnish translations",
        "Terms with German translations",
        "Terms with Japanese translations",
        "Terms with Russian translations",
        "Terms with Serbo-Croatian translations",
        "en:Mathematics"
      ],
      "glosses": [
        "An algebra over a field whose bilinear product is alternating (or, equivalently for a bilinear product, anticommutative) and satisfies the Jacobi identity. Such a bilinear product is called a Lie bracket."
      ],
      "links": [
        [
          "mathematics",
          "mathematics"
        ],
        [
          "algebra over a field",
          "algebra over a field"
        ],
        [
          "bilinear",
          "bilinear"
        ],
        [
          "product",
          "product"
        ],
        [
          "alternating",
          "alternating"
        ],
        [
          "anticommutative",
          "anticommutative"
        ],
        [
          "Jacobi identity",
          "Jacobi identity"
        ],
        [
          "Lie bracket",
          "Lie bracket"
        ]
      ],
      "raw_glosses": [
        "(mathematics) An algebra over a field whose bilinear product is alternating (or, equivalently for a bilinear product, anticommutative) and satisfies the Jacobi identity. Such a bilinear product is called a Lie bracket."
      ],
      "topics": [
        "mathematics",
        "sciences"
      ],
      "wikipedia": [
        "Hermann Weyl",
        "Lie algebra",
        "Sophus Lie"
      ]
    }
  ],
  "sounds": [
    {
      "ipa": "/liː.ældʒɨbɹə/"
    }
  ],
  "translations": [
    {
      "code": "bg",
      "lang": "Bulgarian",
      "roman": "algebra na Li",
      "sense": "algebraic structure",
      "tags": [
        "feminine"
      ],
      "word": "алгебра на Ли"
    },
    {
      "code": "fi",
      "lang": "Finnish",
      "sense": "algebraic structure",
      "word": "Lien algebra"
    },
    {
      "code": "de",
      "lang": "German",
      "sense": "algebraic structure",
      "word": "Lie-Algebra"
    },
    {
      "code": "ja",
      "lang": "Japanese",
      "roman": "rīdaisū",
      "sense": "algebraic structure",
      "word": "リー代数"
    },
    {
      "code": "ru",
      "lang": "Russian",
      "roman": "álgebra Li",
      "sense": "algebraic structure",
      "tags": [
        "feminine"
      ],
      "word": "а́лгебра Ли"
    },
    {
      "code": "sh",
      "lang": "Serbo-Croatian",
      "sense": "algebraic structure",
      "tags": [
        "Roman",
        "feminine"
      ],
      "word": "Liejeva algebra"
    }
  ],
  "word": "Lie algebra"
}

Download raw JSONL data for Lie algebra meaning in English (2.6kB)


This page is a part of the kaikki.org machine-readable English dictionary. This dictionary is based on structured data extracted on 2025-06-13 from the enwiktionary dump dated 2025-06-01 using wiktextract (9c82c1c and f1c2b61). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.

If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.