See Carol prime in All languages combined, or Wiktionary
{ "forms": [ { "form": "Carol primes", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "Carol prime (plural Carol primes)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ { "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w" }, { "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with entries", "parents": [], "source": "w" }, { "kind": "topical", "langcode": "en", "name": "Mathematics", "orig": "en:Mathematics", "parents": [ "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" }, { "kind": "topical", "langcode": "en", "name": "Number theory", "orig": "en:Number theory", "parents": [ "Mathematics", "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" } ], "examples": [ { "ref": "2011, Scott B. Guthery, The Farey Sieve, page 8:", "text": "Carol Primes: FareySieve[{(2^#-1)^2-2&}]", "type": "quote" }, { "ref": "2019, Bruce Pyne, Prime Recreations: An Olio of Curios about Prime Numbers, page 29:", "text": "16,127 The fifth Carol prime of the form (2n – 1)² – 2", "type": "quote" }, { "ref": "2021, Elena Deza, Mersenne Numbers And Fermat Numbers, page 138:", "text": "By this approach, the Kynèa primes and the Carol primes can be consider as examples of generated Mersenne primes, with the polynomials f(x) = x² ± 2x − 1.", "type": "quote" } ], "glosses": [ "A Carol number that is also a prime number." ], "id": "en-Carol_prime-en-noun-LcNlb6~2", "links": [ [ "mathematics", "mathematics" ], [ "Carol number", "Carol number" ], [ "prime number", "prime number" ] ], "raw_glosses": [ "(mathematics) A Carol number that is also a prime number." ], "topics": [ "mathematics", "sciences" ] } ], "word": "Carol prime" }
{ "forms": [ { "form": "Carol primes", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "Carol prime (plural Carol primes)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ "English countable nouns", "English entries with incorrect language header", "English eponyms", "English lemmas", "English multiword terms", "English nouns", "English terms with quotations", "Pages with 1 entry", "Pages with entries", "en:Mathematics", "en:Number theory" ], "examples": [ { "ref": "2011, Scott B. Guthery, The Farey Sieve, page 8:", "text": "Carol Primes: FareySieve[{(2^#-1)^2-2&}]", "type": "quote" }, { "ref": "2019, Bruce Pyne, Prime Recreations: An Olio of Curios about Prime Numbers, page 29:", "text": "16,127 The fifth Carol prime of the form (2n – 1)² – 2", "type": "quote" }, { "ref": "2021, Elena Deza, Mersenne Numbers And Fermat Numbers, page 138:", "text": "By this approach, the Kynèa primes and the Carol primes can be consider as examples of generated Mersenne primes, with the polynomials f(x) = x² ± 2x − 1.", "type": "quote" } ], "glosses": [ "A Carol number that is also a prime number." ], "links": [ [ "mathematics", "mathematics" ], [ "Carol number", "Carol number" ], [ "prime number", "prime number" ] ], "raw_glosses": [ "(mathematics) A Carol number that is also a prime number." ], "topics": [ "mathematics", "sciences" ] } ], "word": "Carol prime" }
Download raw JSONL data for Carol prime meaning in English (1.4kB)
This page is a part of the kaikki.org machine-readable English dictionary. This dictionary is based on structured data extracted on 2024-11-06 from the enwiktionary dump dated 2024-10-02 using wiktextract (fbeafe8 and 7f03c9b). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.