See proregular on Wiktionary
{ "etymology_templates": [ { "args": { "1": "en", "2": "pro", "3": "regular" }, "expansion": "pro- + regular", "name": "prefix" } ], "etymology_text": "From pro- + regular.", "head_templates": [ { "args": { "1": "-" }, "expansion": "proregular (not comparable)", "name": "en-adj" } ], "lang": "English", "lang_code": "en", "pos": "adj", "senses": [ { "categories": [ { "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w" }, { "kind": "other", "name": "English terms prefixed with pro-", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with entries", "parents": [], "source": "w" }, { "kind": "topical", "langcode": "en", "name": "Mathematics", "orig": "en:Mathematics", "parents": [ "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" } ], "examples": [ { "ref": "2016, Liran Shaul, “Adic reduction to the diagonal and a relation between cofiniteness and derived completion”, in arXiv:", "text": "Then adic reduction to the diagonal holds: A#x5C;otimes#x7B;L#x7D;#x5F;#x7B;A#x5C;hat#x7B;#x5C;otimes#x7D;#x7B;L#x7D;#x5F;#x7B;K#x7D;A#x7D;(M#x5C;hat#x7B;#x5C;otimes#x7D;#x7B;L#x7D;#x5F;#x7B;K#x7D;N)#x5C;congM#x5C;otimes#x7B;L#x7D;#x5F;AN. (2) Let A be a commutative ring, let a#x5C;subseteqA be a weakly proregular ideal, let M be an A-module, and assume that the a-adic completion of A is noetherian (if A is noetherian, all these conditions are always satisfied).", "type": "quote" } ], "glosses": [ "Having the property that the inverse systems of the Koszul cohomology modules satisfy the Inverse limit#Mittag-Leffler condition.)" ], "id": "en-proregular-en-adj-2uH-P0N~", "links": [ [ "mathematics", "mathematics" ], [ "module", "module" ] ], "raw_glosses": [ "(mathematics) Having the property that the inverse systems of the Koszul cohomology modules satisfy the Inverse limit#Mittag-Leffler condition.)" ], "tags": [ "not-comparable" ], "topics": [ "mathematics", "sciences" ] } ], "word": "proregular" }
{ "etymology_templates": [ { "args": { "1": "en", "2": "pro", "3": "regular" }, "expansion": "pro- + regular", "name": "prefix" } ], "etymology_text": "From pro- + regular.", "head_templates": [ { "args": { "1": "-" }, "expansion": "proregular (not comparable)", "name": "en-adj" } ], "lang": "English", "lang_code": "en", "pos": "adj", "senses": [ { "categories": [ "English adjectives", "English entries with incorrect language header", "English lemmas", "English terms prefixed with pro-", "English terms with quotations", "English uncomparable adjectives", "Pages with 1 entry", "Pages with entries", "en:Mathematics" ], "examples": [ { "ref": "2016, Liran Shaul, “Adic reduction to the diagonal and a relation between cofiniteness and derived completion”, in arXiv:", "text": "Then adic reduction to the diagonal holds: A#x5C;otimes#x7B;L#x7D;#x5F;#x7B;A#x5C;hat#x7B;#x5C;otimes#x7D;#x7B;L#x7D;#x5F;#x7B;K#x7D;A#x7D;(M#x5C;hat#x7B;#x5C;otimes#x7D;#x7B;L#x7D;#x5F;#x7B;K#x7D;N)#x5C;congM#x5C;otimes#x7B;L#x7D;#x5F;AN. (2) Let A be a commutative ring, let a#x5C;subseteqA be a weakly proregular ideal, let M be an A-module, and assume that the a-adic completion of A is noetherian (if A is noetherian, all these conditions are always satisfied).", "type": "quote" } ], "glosses": [ "Having the property that the inverse systems of the Koszul cohomology modules satisfy the Inverse limit#Mittag-Leffler condition.)" ], "links": [ [ "mathematics", "mathematics" ], [ "module", "module" ] ], "raw_glosses": [ "(mathematics) Having the property that the inverse systems of the Koszul cohomology modules satisfy the Inverse limit#Mittag-Leffler condition.)" ], "tags": [ "not-comparable" ], "topics": [ "mathematics", "sciences" ] } ], "word": "proregular" }
Download raw JSONL data for proregular meaning in All languages combined (1.7kB)
{ "called_from": "page/1412", "msg": "gloss may contain unhandled list items: Having the property that the inverse systems of the Koszul cohomology modules satisfy the Inverse limit#Mittag-Leffler condition.)", "path": [ "proregular" ], "section": "English", "subsection": "adjective", "title": "proregular", "trace": "" }
This page is a part of the kaikki.org machine-readable All languages combined dictionary. This dictionary is based on structured data extracted on 2024-12-21 from the enwiktionary dump dated 2024-12-04 using wiktextract (d8cb2f3 and 4e554ae). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.