See prenex on Wiktionary
{ "etymology_templates": [ { "args": { "1": "en", "2": "LL.", "3": "praenexus", "4": "", "5": "bound up in front" }, "expansion": "Borrowed from Late Latin praenexus (“bound up in front”)", "name": "bor+" }, { "args": { "1": "en", "2": "la", "3": "prae-", "4": "", "5": "before" }, "expansion": "Latin prae- (“before”)", "name": "der" } ], "etymology_text": "Borrowed from Late Latin praenexus (“bound up in front”), from Latin prae- (“before”) and nexus, past participle of nectō (“to bind”).", "head_templates": [ { "args": { "1": "-" }, "expansion": "prenex (not comparable)", "name": "en-adj" } ], "lang": "English", "lang_code": "en", "pos": "adj", "senses": [ { "categories": [ { "kind": "topical", "langcode": "en", "name": "Logic", "orig": "en:Logic", "parents": [ "Formal sciences", "Philosophy", "Sciences", "All topics", "Fundamental" ], "source": "w" }, { "kind": "topical", "langcode": "en", "name": "Mathematics", "orig": "en:Mathematics", "parents": [ "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" } ], "derived": [ { "word": "prenex normal form" } ], "examples": [ { "ref": "1999, Neil Immerman, Descriptive Complexity, New York: Springer-Verlag, page 12", "text": "We say that ϕ is universal iff it can be written in prenex form — i.e. with all quantifiers at the beginning — using only universal quantifiers.", "type": "quotation" } ], "glosses": [ "Of a formula, having all of its quantifiers at the beginning." ], "id": "en-prenex-en-adj-7Uv0E6DZ", "links": [ [ "mathematics", "mathematics" ], [ "logic", "logic" ], [ "quantifier", "quantifier" ] ], "raw_glosses": [ "(mathematics, logic) Of a formula, having all of its quantifiers at the beginning." ], "tags": [ "not-comparable" ], "topics": [ "human-sciences", "logic", "mathematics", "philosophy", "sciences" ] } ], "sounds": [ { "ipa": "/ˈpɹi.nɛks/" } ], "word": "prenex" } { "etymology_templates": [ { "args": { "1": "en", "2": "LL.", "3": "praenexus", "4": "", "5": "bound up in front" }, "expansion": "Borrowed from Late Latin praenexus (“bound up in front”)", "name": "bor+" }, { "args": { "1": "en", "2": "la", "3": "prae-", "4": "", "5": "before" }, "expansion": "Latin prae- (“before”)", "name": "der" } ], "etymology_text": "Borrowed from Late Latin praenexus (“bound up in front”), from Latin prae- (“before”) and nexus, past participle of nectō (“to bind”).", "forms": [ { "form": "prenexes", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "prenex (plural prenexes)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ { "kind": "topical", "langcode": "en", "name": "Logic", "orig": "en:Logic", "parents": [ "Formal sciences", "Philosophy", "Sciences", "All topics", "Fundamental" ], "source": "w" }, { "kind": "topical", "langcode": "en", "name": "Mathematics", "orig": "en:Mathematics", "parents": [ "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" }, { "_dis": "36 64", "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w+disamb" }, { "_dis": "35 65", "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w+disamb" }, { "_dis": "28 72", "kind": "other", "name": "Pages with entries", "parents": [], "source": "w+disamb" } ], "examples": [ { "text": "∀x.∃y. is the prenex of the formula ∀x.∃y.P(x,y)" } ], "glosses": [ "The initial part of a prenex formula where all of the formula's bound variables are bound by logical quantifiers." ], "id": "en-prenex-en-noun-v2gwsFvV", "links": [ [ "mathematics", "mathematics" ], [ "logic", "logic" ] ], "raw_glosses": [ "(mathematics, logic) The initial part of a prenex formula where all of the formula's bound variables are bound by logical quantifiers." ], "topics": [ "human-sciences", "logic", "mathematics", "philosophy", "sciences" ] } ], "sounds": [ { "ipa": "/ˈpɹi.nɛks/" } ], "word": "prenex" }
{ "categories": [ "English adjectives", "English countable nouns", "English entries with incorrect language header", "English lemmas", "English nouns", "English terms borrowed from Late Latin", "English terms derived from Late Latin", "English terms derived from Latin", "English uncomparable adjectives", "Pages with 1 entry", "Pages with entries" ], "derived": [ { "word": "prenex normal form" } ], "etymology_templates": [ { "args": { "1": "en", "2": "LL.", "3": "praenexus", "4": "", "5": "bound up in front" }, "expansion": "Borrowed from Late Latin praenexus (“bound up in front”)", "name": "bor+" }, { "args": { "1": "en", "2": "la", "3": "prae-", "4": "", "5": "before" }, "expansion": "Latin prae- (“before”)", "name": "der" } ], "etymology_text": "Borrowed from Late Latin praenexus (“bound up in front”), from Latin prae- (“before”) and nexus, past participle of nectō (“to bind”).", "head_templates": [ { "args": { "1": "-" }, "expansion": "prenex (not comparable)", "name": "en-adj" } ], "lang": "English", "lang_code": "en", "pos": "adj", "senses": [ { "categories": [ "en:Logic", "en:Mathematics" ], "examples": [ { "ref": "1999, Neil Immerman, Descriptive Complexity, New York: Springer-Verlag, page 12", "text": "We say that ϕ is universal iff it can be written in prenex form — i.e. with all quantifiers at the beginning — using only universal quantifiers.", "type": "quotation" } ], "glosses": [ "Of a formula, having all of its quantifiers at the beginning." ], "links": [ [ "mathematics", "mathematics" ], [ "logic", "logic" ], [ "quantifier", "quantifier" ] ], "raw_glosses": [ "(mathematics, logic) Of a formula, having all of its quantifiers at the beginning." ], "tags": [ "not-comparable" ], "topics": [ "human-sciences", "logic", "mathematics", "philosophy", "sciences" ] } ], "sounds": [ { "ipa": "/ˈpɹi.nɛks/" } ], "word": "prenex" } { "categories": [ "English adjectives", "English countable nouns", "English entries with incorrect language header", "English lemmas", "English nouns", "English terms borrowed from Late Latin", "English terms derived from Late Latin", "English terms derived from Latin", "English uncomparable adjectives", "Pages with 1 entry", "Pages with entries" ], "etymology_templates": [ { "args": { "1": "en", "2": "LL.", "3": "praenexus", "4": "", "5": "bound up in front" }, "expansion": "Borrowed from Late Latin praenexus (“bound up in front”)", "name": "bor+" }, { "args": { "1": "en", "2": "la", "3": "prae-", "4": "", "5": "before" }, "expansion": "Latin prae- (“before”)", "name": "der" } ], "etymology_text": "Borrowed from Late Latin praenexus (“bound up in front”), from Latin prae- (“before”) and nexus, past participle of nectō (“to bind”).", "forms": [ { "form": "prenexes", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "prenex (plural prenexes)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ "en:Logic", "en:Mathematics" ], "examples": [ { "text": "∀x.∃y. is the prenex of the formula ∀x.∃y.P(x,y)" } ], "glosses": [ "The initial part of a prenex formula where all of the formula's bound variables are bound by logical quantifiers." ], "links": [ [ "mathematics", "mathematics" ], [ "logic", "logic" ] ], "raw_glosses": [ "(mathematics, logic) The initial part of a prenex formula where all of the formula's bound variables are bound by logical quantifiers." ], "topics": [ "human-sciences", "logic", "mathematics", "philosophy", "sciences" ] } ], "sounds": [ { "ipa": "/ˈpɹi.nɛks/" } ], "word": "prenex" }
Download raw JSONL data for prenex meaning in All languages combined (3.4kB)
This page is a part of the kaikki.org machine-readable All languages combined dictionary. This dictionary is based on structured data extracted on 2024-11-06 from the enwiktionary dump dated 2024-10-02 using wiktextract (fbeafe8 and 7f03c9b). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.