See normalizer on Wiktionary
{ "etymology_templates": [ { "args": { "1": "en", "2": "normalize", "3": "er" }, "expansion": "normalize + -er", "name": "suffix" } ], "etymology_text": "From normalize + -er.", "forms": [ { "form": "normalizers", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "normalizer (plural normalizers)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "related": [ { "_dis1": "0 0", "word": "normalization" } ], "senses": [ { "categories": [ { "_dis": "63 37", "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w+disamb" }, { "_dis": "66 34", "kind": "other", "name": "English terms suffixed with -er", "parents": [], "source": "w+disamb" }, { "_dis": "70 30", "kind": "other", "name": "Entries with translation boxes", "parents": [], "source": "w+disamb" }, { "_dis": "61 39", "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w+disamb" }, { "_dis": "85 15", "kind": "other", "name": "Pages with entries", "parents": [], "source": "w+disamb" }, { "_dis": "70 30", "kind": "other", "name": "Terms with German translations", "parents": [], "source": "w+disamb" } ], "glosses": [ "One who or that which normalizes, fits to a norm or standard etc." ], "id": "en-normalizer-en-noun-cQanZ1jK", "links": [ [ "norm", "norm" ], [ "standard", "standard" ] ] }, { "categories": [ { "kind": "topical", "langcode": "en", "name": "Algebra", "orig": "en:Algebra", "parents": [ "Mathematics", "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" } ], "examples": [ { "text": "In symbols, the normalizer of some subset S of group G is the subset N(S)=g∈G|g⁻¹Sg=S, so that S would be a normal subgroup if N(S) were the whole group." } ], "glosses": [ "The subset of elements of some group which leave some given subset invariant when conjugating it." ], "id": "en-normalizer-en-noun-LuowNoVo", "links": [ [ "algebra", "algebra" ], [ "subset", "subset" ], [ "element", "element" ], [ "group", "group" ], [ "invariant", "invariant" ], [ "conjugating", "conjugate" ] ], "raw_glosses": [ "(algebra) The subset of elements of some group which leave some given subset invariant when conjugating it." ], "topics": [ "algebra", "mathematics", "sciences" ], "translations": [ { "_dis1": "6 94", "code": "de", "lang": "German", "sense": "set of group elements leaving a given subset invariant under conjugation", "tags": [ "masculine" ], "word": "Normalisator" } ] } ], "sounds": [ { "audio": "LL-Q1860 (eng)-Flame, not lame-normalizer.wav", "mp3_url": "https://upload.wikimedia.org/wikipedia/commons/transcoded/3/33/LL-Q1860_%28eng%29-Flame%2C_not_lame-normalizer.wav/LL-Q1860_%28eng%29-Flame%2C_not_lame-normalizer.wav.mp3", "ogg_url": "https://upload.wikimedia.org/wikipedia/commons/transcoded/3/33/LL-Q1860_%28eng%29-Flame%2C_not_lame-normalizer.wav/LL-Q1860_%28eng%29-Flame%2C_not_lame-normalizer.wav.ogg" } ], "wikipedia": [ "normalizer" ], "word": "normalizer" }
{ "categories": [ "English countable nouns", "English entries with incorrect language header", "English lemmas", "English nouns", "English terms suffixed with -er", "Entries with translation boxes", "Pages with 1 entry", "Pages with entries", "Terms with German translations" ], "etymology_templates": [ { "args": { "1": "en", "2": "normalize", "3": "er" }, "expansion": "normalize + -er", "name": "suffix" } ], "etymology_text": "From normalize + -er.", "forms": [ { "form": "normalizers", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "normalizer (plural normalizers)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "related": [ { "word": "normalization" } ], "senses": [ { "glosses": [ "One who or that which normalizes, fits to a norm or standard etc." ], "links": [ [ "norm", "norm" ], [ "standard", "standard" ] ] }, { "categories": [ "en:Algebra" ], "examples": [ { "text": "In symbols, the normalizer of some subset S of group G is the subset N(S)=g∈G|g⁻¹Sg=S, so that S would be a normal subgroup if N(S) were the whole group." } ], "glosses": [ "The subset of elements of some group which leave some given subset invariant when conjugating it." ], "links": [ [ "algebra", "algebra" ], [ "subset", "subset" ], [ "element", "element" ], [ "group", "group" ], [ "invariant", "invariant" ], [ "conjugating", "conjugate" ] ], "raw_glosses": [ "(algebra) The subset of elements of some group which leave some given subset invariant when conjugating it." ], "topics": [ "algebra", "mathematics", "sciences" ] } ], "sounds": [ { "audio": "LL-Q1860 (eng)-Flame, not lame-normalizer.wav", "mp3_url": "https://upload.wikimedia.org/wikipedia/commons/transcoded/3/33/LL-Q1860_%28eng%29-Flame%2C_not_lame-normalizer.wav/LL-Q1860_%28eng%29-Flame%2C_not_lame-normalizer.wav.mp3", "ogg_url": "https://upload.wikimedia.org/wikipedia/commons/transcoded/3/33/LL-Q1860_%28eng%29-Flame%2C_not_lame-normalizer.wav/LL-Q1860_%28eng%29-Flame%2C_not_lame-normalizer.wav.ogg" } ], "translations": [ { "code": "de", "lang": "German", "sense": "set of group elements leaving a given subset invariant under conjugation", "tags": [ "masculine" ], "word": "Normalisator" } ], "wikipedia": [ "normalizer" ], "word": "normalizer" }
Download raw JSONL data for normalizer meaning in All languages combined (2.1kB)
This page is a part of the kaikki.org machine-readable All languages combined dictionary. This dictionary is based on structured data extracted on 2025-01-03 from the enwiktionary dump dated 2025-01-01 using wiktextract (eaedd02 and 8fbd9e8). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.