"multifractional" meaning in All languages combined

See multifractional on Wiktionary

Adjective [English]

Etymology: From multi- + fractional. Etymology templates: {{prefix|en|multi|fractional}} multi- + fractional Head templates: {{en-adj|-}} multifractional (not comparable)
  1. (mathematics) Involving multiple fractions. Wikipedia link: en:Multi-fractional order estimator Tags: not-comparable Categories (topical): Mathematics
{
  "etymology_templates": [
    {
      "args": {
        "1": "en",
        "2": "multi",
        "3": "fractional"
      },
      "expansion": "multi- + fractional",
      "name": "prefix"
    }
  ],
  "etymology_text": "From multi- + fractional.",
  "head_templates": [
    {
      "args": {
        "1": "-"
      },
      "expansion": "multifractional (not comparable)",
      "name": "en-adj"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "adj",
  "senses": [
    {
      "categories": [
        {
          "kind": "other",
          "name": "English entries with incorrect language header",
          "parents": [
            "Entries with incorrect language header",
            "Entry maintenance"
          ],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "English terms prefixed with multi-",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with 1 entry",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with entries",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "topical",
          "langcode": "en",
          "name": "Mathematics",
          "orig": "en:Mathematics",
          "parents": [
            "Formal sciences",
            "Sciences",
            "All topics",
            "Fundamental"
          ],
          "source": "w"
        }
      ],
      "examples": [
        {
          "ref": "2015, Sixian Jin, Qidi Peng, Henry Schellhorn, “Estimation of the Pointwise Hölder Exponent of Hidden Multifractional Brownian Motion Using Wavelet Coefficients”, in arXiv:",
          "text": "We propose a wavelet-based approach to construct consistent estimators of the pointwise H\\\"older exponent of a multifractional Brownian motion, in the case where this underlying process is not directly observed.",
          "type": "quote"
        }
      ],
      "glosses": [
        "Involving multiple fractions."
      ],
      "id": "en-multifractional-en-adj-0d-hJPd5",
      "links": [
        [
          "mathematics",
          "mathematics"
        ]
      ],
      "raw_glosses": [
        "(mathematics) Involving multiple fractions."
      ],
      "tags": [
        "not-comparable"
      ],
      "topics": [
        "mathematics",
        "sciences"
      ],
      "wikipedia": [
        "en:Multi-fractional order estimator"
      ]
    }
  ],
  "word": "multifractional"
}
{
  "etymology_templates": [
    {
      "args": {
        "1": "en",
        "2": "multi",
        "3": "fractional"
      },
      "expansion": "multi- + fractional",
      "name": "prefix"
    }
  ],
  "etymology_text": "From multi- + fractional.",
  "head_templates": [
    {
      "args": {
        "1": "-"
      },
      "expansion": "multifractional (not comparable)",
      "name": "en-adj"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "adj",
  "senses": [
    {
      "categories": [
        "English adjectives",
        "English entries with incorrect language header",
        "English lemmas",
        "English terms prefixed with multi-",
        "English terms with quotations",
        "English uncomparable adjectives",
        "Pages with 1 entry",
        "Pages with entries",
        "en:Mathematics"
      ],
      "examples": [
        {
          "ref": "2015, Sixian Jin, Qidi Peng, Henry Schellhorn, “Estimation of the Pointwise Hölder Exponent of Hidden Multifractional Brownian Motion Using Wavelet Coefficients”, in arXiv:",
          "text": "We propose a wavelet-based approach to construct consistent estimators of the pointwise H\\\"older exponent of a multifractional Brownian motion, in the case where this underlying process is not directly observed.",
          "type": "quote"
        }
      ],
      "glosses": [
        "Involving multiple fractions."
      ],
      "links": [
        [
          "mathematics",
          "mathematics"
        ]
      ],
      "raw_glosses": [
        "(mathematics) Involving multiple fractions."
      ],
      "tags": [
        "not-comparable"
      ],
      "topics": [
        "mathematics",
        "sciences"
      ],
      "wikipedia": [
        "en:Multi-fractional order estimator"
      ]
    }
  ],
  "word": "multifractional"
}

Download raw JSONL data for multifractional meaning in All languages combined (1.3kB)


This page is a part of the kaikki.org machine-readable All languages combined dictionary. This dictionary is based on structured data extracted on 2024-11-06 from the enwiktionary dump dated 2024-10-02 using wiktextract (fbeafe8 and 7f03c9b). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.

If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.