See intermediate value theorem on Wiktionary
{ "head_templates": [ { "args": { "1": "?" }, "expansion": "intermediate value theorem", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ { "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w" }, { "kind": "other", "name": "Entries with translation boxes", "parents": [], "source": "w" }, { "kind": "other", "name": "Hebrew terms with redundant script codes", "parents": [ "Terms with redundant script codes", "Entry maintenance" ], "source": "w" }, { "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with entries", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with Finnish translations", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with German translations", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with Hebrew translations", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with Russian translations", "parents": [], "source": "w" }, { "kind": "topical", "langcode": "en", "name": "Calculus", "orig": "en:Calculus", "parents": [ "Mathematical analysis", "Mathematics", "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" } ], "glosses": [ "A theorem that states for each value between the least upper bound and greatest lower bound of the image of a continuous function there is a corresponding point in its domain that the function maps to that value." ], "id": "en-intermediate_value_theorem-en-noun-Sl6wtGp9", "links": [ [ "calculus", "calculus" ], [ "theorem", "theorem" ], [ "least upper bound", "least upper bound" ], [ "greatest lower bound", "greatest lower bound" ], [ "image", "image" ], [ "continuous function", "continuous function" ], [ "domain", "domain" ] ], "raw_glosses": [ "(calculus) A theorem that states for each value between the least upper bound and greatest lower bound of the image of a continuous function there is a corresponding point in its domain that the function maps to that value." ], "topics": [ "calculus", "mathematics", "sciences" ], "translations": [ { "code": "fi", "lang": "Finnish", "sense": "intermediate value theorem", "word": "jatkuvien funktioiden väliarvolause" }, { "code": "fi", "lang": "Finnish", "sense": "intermediate value theorem", "word": "väliarvolause" }, { "code": "de", "lang": "German", "sense": "intermediate value theorem", "tags": [ "masculine" ], "word": "Zwischenwertsatz" }, { "code": "he", "lang": "Hebrew", "roman": "mishpát érech habeynáim", "sense": "intermediate value theorem", "tags": [ "masculine" ], "word": "משפט ערך הביניים" }, { "code": "ru", "lang": "Russian", "roman": "teoréma o promežútočnom značénii", "sense": "intermediate value theorem", "tags": [ "feminine" ], "word": "теоре́ма о промежу́точном значе́нии" }, { "code": "ru", "lang": "Russian", "roman": "teoréma Bolʹcáno-Koší", "sense": "intermediate value theorem", "tags": [ "feminine" ], "word": "теоре́ма Больца́но-Коши́" } ], "wikipedia": [ "intermediate value theorem" ] } ], "word": "intermediate value theorem" }
{ "head_templates": [ { "args": { "1": "?" }, "expansion": "intermediate value theorem", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ "English countable nouns", "English entries with incorrect language header", "English lemmas", "English multiword terms", "English nouns", "English nouns with unknown or uncertain plurals", "Entries with translation boxes", "Hebrew terms with redundant script codes", "Pages with 1 entry", "Pages with entries", "Terms with Finnish translations", "Terms with German translations", "Terms with Hebrew translations", "Terms with Russian translations", "en:Calculus" ], "glosses": [ "A theorem that states for each value between the least upper bound and greatest lower bound of the image of a continuous function there is a corresponding point in its domain that the function maps to that value." ], "links": [ [ "calculus", "calculus" ], [ "theorem", "theorem" ], [ "least upper bound", "least upper bound" ], [ "greatest lower bound", "greatest lower bound" ], [ "image", "image" ], [ "continuous function", "continuous function" ], [ "domain", "domain" ] ], "raw_glosses": [ "(calculus) A theorem that states for each value between the least upper bound and greatest lower bound of the image of a continuous function there is a corresponding point in its domain that the function maps to that value." ], "topics": [ "calculus", "mathematics", "sciences" ], "wikipedia": [ "intermediate value theorem" ] } ], "translations": [ { "code": "fi", "lang": "Finnish", "sense": "intermediate value theorem", "word": "jatkuvien funktioiden väliarvolause" }, { "code": "fi", "lang": "Finnish", "sense": "intermediate value theorem", "word": "väliarvolause" }, { "code": "de", "lang": "German", "sense": "intermediate value theorem", "tags": [ "masculine" ], "word": "Zwischenwertsatz" }, { "code": "he", "lang": "Hebrew", "roman": "mishpát érech habeynáim", "sense": "intermediate value theorem", "tags": [ "masculine" ], "word": "משפט ערך הביניים" }, { "code": "ru", "lang": "Russian", "roman": "teoréma o promežútočnom značénii", "sense": "intermediate value theorem", "tags": [ "feminine" ], "word": "теоре́ма о промежу́точном значе́нии" }, { "code": "ru", "lang": "Russian", "roman": "teoréma Bolʹcáno-Koší", "sense": "intermediate value theorem", "tags": [ "feminine" ], "word": "теоре́ма Больца́но-Коши́" } ], "word": "intermediate value theorem" }
Download raw JSONL data for intermediate value theorem meaning in All languages combined (2.4kB)
This page is a part of the kaikki.org machine-readable All languages combined dictionary. This dictionary is based on structured data extracted on 2025-01-13 from the enwiktionary dump dated 2025-01-01 using wiktextract (4ba5975 and 4ed51a5). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.