See delgraf on Wiktionary
{ "etymology_templates": [ { "args": { "1": "da", "2": "del", "3": "graf" }, "expansion": "del + graf", "name": "af" } ], "etymology_text": "del + graf", "forms": [ { "form": "no-table-tags", "source": "declension", "tags": [ "table-tags" ] }, { "form": "da-decl", "source": "declension", "tags": [ "inflection-template" ] }, { "form": "delgraf", "source": "declension", "tags": [ "indefinite", "nominative", "singular" ] }, { "form": "delgrafen", "source": "declension", "tags": [ "definite", "nominative", "singular" ] }, { "form": "delgrafer", "source": "declension", "tags": [ "indefinite", "nominative", "plural" ] }, { "form": "delgraferne", "source": "declension", "tags": [ "definite", "nominative", "plural" ] }, { "form": "delgrafs", "source": "declension", "tags": [ "genitive", "indefinite", "singular" ] }, { "form": "delgrafens", "source": "declension", "tags": [ "definite", "genitive", "singular" ] }, { "form": "delgrafers", "source": "declension", "tags": [ "genitive", "indefinite", "plural" ] }, { "form": "delgrafernes", "source": "declension", "tags": [ "definite", "genitive", "plural" ] } ], "head_templates": [ { "args": { "1": "da", "10": "delgraf", "11": "", "12": "{{{pl-indef-2}}}", "13": "", "14": "{{{pl-indef-3}}}", "15": "", "16": "{{{com}}}", "2": "noun", "3": "", "4": "{{{1}}}", "5": "", "6": "{{{sg-def-2}}}", "7": "", "8": "", "9": "", "f1accel-form": "def|s", "f4accel-form": "indef|p", "g": "", "g2": "", "head": "" }, "expansion": "delgraf", "name": "head" }, { "args": {}, "expansion": "delgraf", "name": "da-noun" } ], "inflection_templates": [ { "args": { "1": "en", "2": "er" }, "name": "da-decl" }, { "args": { "g": "c", "gen-pl-def": "delgrafernes", "gen-pl-def-2": "", "gen-pl-def-3": "", "gen-pl-indef": "delgrafers", "gen-pl-indef-2": "", "gen-sg-def": "delgrafens", "gen-sg-def-2": "", "gen-sg-indef": "delgrafs", "gen-sg-indef-2": "", "gen-sg-indef-3": "", "pl-def": "delgraferne", "pl-def-2": "", "pl-def-3": "", "pl-indef": "delgrafer", "pl-indef-2": "", "pl-indef-3": "", "sg-def": "delgrafen", "sg-def-2": "", "sg-indef": "delgraf" }, "name": "da-noun-infl-base" } ], "lang": "Danish", "lang_code": "da", "pos": "noun", "senses": [ { "categories": [ { "kind": "other", "name": "Danish entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w" }, { "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with entries", "parents": [], "source": "w" }, { "kind": "topical", "langcode": "da", "name": "Graph theory", "orig": "da:Graph theory", "parents": [ "Mathematics", "Visualization", "Formal sciences", "Computing", "Interdisciplinary fields", "Sciences", "Technology", "All topics", "Fundamental" ], "source": "w" } ], "examples": [ { "english": "Connections between cardinality of infinite graphs and cardinalities of certain subgraphs, with a simple structure, contained in the former, which determine the cardinality of the entire graph.", "ref": "1974, Aarhus Universitet, Aarsberetning, →ISBN:", "text": "Sammenhænge mellem kardinalitet af uendelige grafer og kardinaliteter af visse delgrafer af simpel struktur indeholdt i disse, som bestemmer kardinaliteten af hele grafen.", "type": "quote" }, { "english": "A factor in a graph G is a subgraph that contains all the vertices of G.", "ref": "1985, Normat: Nordisk matematisk tidskrift:", "text": "En faktor i en graf G er en delgraf, som indeholder alle G's punkter.", "type": "quote" }, { "english": "One can expand this to any finite number of colors, and investigate the cardinality of the resultant monochromatic complete subgraphs.", "ref": "1984, Normat:", "text": "Man kan udvide dette til ethvert endeligt antal farver og undersøge kardinaliteten af de fremkomne monokromatiske komplette delgrafer.", "type": "quote" } ], "glosses": [ "subgraph" ], "id": "en-delgraf-da-noun-vznHn5oW", "links": [ [ "graph theory", "graph theory" ], [ "subgraph", "subgraph" ] ], "raw_glosses": [ "(graph theory) subgraph" ], "topics": [ "graph-theory", "mathematics", "sciences" ] } ], "word": "delgraf" }
{ "etymology_templates": [ { "args": { "1": "da", "2": "del", "3": "graf" }, "expansion": "del + graf", "name": "af" } ], "etymology_text": "del + graf", "forms": [ { "form": "no-table-tags", "source": "declension", "tags": [ "table-tags" ] }, { "form": "da-decl", "source": "declension", "tags": [ "inflection-template" ] }, { "form": "delgraf", "source": "declension", "tags": [ "indefinite", "nominative", "singular" ] }, { "form": "delgrafen", "source": "declension", "tags": [ "definite", "nominative", "singular" ] }, { "form": "delgrafer", "source": "declension", "tags": [ "indefinite", "nominative", "plural" ] }, { "form": "delgraferne", "source": "declension", "tags": [ "definite", "nominative", "plural" ] }, { "form": "delgrafs", "source": "declension", "tags": [ "genitive", "indefinite", "singular" ] }, { "form": "delgrafens", "source": "declension", "tags": [ "definite", "genitive", "singular" ] }, { "form": "delgrafers", "source": "declension", "tags": [ "genitive", "indefinite", "plural" ] }, { "form": "delgrafernes", "source": "declension", "tags": [ "definite", "genitive", "plural" ] } ], "head_templates": [ { "args": { "1": "da", "10": "delgraf", "11": "", "12": "{{{pl-indef-2}}}", "13": "", "14": "{{{pl-indef-3}}}", "15": "", "16": "{{{com}}}", "2": "noun", "3": "", "4": "{{{1}}}", "5": "", "6": "{{{sg-def-2}}}", "7": "", "8": "", "9": "", "f1accel-form": "def|s", "f4accel-form": "indef|p", "g": "", "g2": "", "head": "" }, "expansion": "delgraf", "name": "head" }, { "args": {}, "expansion": "delgraf", "name": "da-noun" } ], "inflection_templates": [ { "args": { "1": "en", "2": "er" }, "name": "da-decl" }, { "args": { "g": "c", "gen-pl-def": "delgrafernes", "gen-pl-def-2": "", "gen-pl-def-3": "", "gen-pl-indef": "delgrafers", "gen-pl-indef-2": "", "gen-sg-def": "delgrafens", "gen-sg-def-2": "", "gen-sg-indef": "delgrafs", "gen-sg-indef-2": "", "gen-sg-indef-3": "", "pl-def": "delgraferne", "pl-def-2": "", "pl-def-3": "", "pl-indef": "delgrafer", "pl-indef-2": "", "pl-indef-3": "", "sg-def": "delgrafen", "sg-def-2": "", "sg-indef": "delgraf" }, "name": "da-noun-infl-base" } ], "lang": "Danish", "lang_code": "da", "pos": "noun", "senses": [ { "categories": [ "Danish compound terms", "Danish entries with incorrect language header", "Danish lemmas", "Danish nouns", "Danish terms with quotations", "Pages with 1 entry", "Pages with entries", "Quotation templates to be cleaned", "da:Graph theory" ], "examples": [ { "english": "Connections between cardinality of infinite graphs and cardinalities of certain subgraphs, with a simple structure, contained in the former, which determine the cardinality of the entire graph.", "ref": "1974, Aarhus Universitet, Aarsberetning, →ISBN:", "text": "Sammenhænge mellem kardinalitet af uendelige grafer og kardinaliteter af visse delgrafer af simpel struktur indeholdt i disse, som bestemmer kardinaliteten af hele grafen.", "type": "quote" }, { "english": "A factor in a graph G is a subgraph that contains all the vertices of G.", "ref": "1985, Normat: Nordisk matematisk tidskrift:", "text": "En faktor i en graf G er en delgraf, som indeholder alle G's punkter.", "type": "quote" }, { "english": "One can expand this to any finite number of colors, and investigate the cardinality of the resultant monochromatic complete subgraphs.", "ref": "1984, Normat:", "text": "Man kan udvide dette til ethvert endeligt antal farver og undersøge kardinaliteten af de fremkomne monokromatiske komplette delgrafer.", "type": "quote" } ], "glosses": [ "subgraph" ], "links": [ [ "graph theory", "graph theory" ], [ "subgraph", "subgraph" ] ], "raw_glosses": [ "(graph theory) subgraph" ], "topics": [ "graph-theory", "mathematics", "sciences" ] } ], "word": "delgraf" }
Download raw JSONL data for delgraf meaning in All languages combined (3.6kB)
This page is a part of the kaikki.org machine-readable All languages combined dictionary. This dictionary is based on structured data extracted on 2025-01-10 from the enwiktionary dump dated 2025-01-01 using wiktextract (df33d17 and 4ed51a5). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.