See cocompletion on Wiktionary
{ "etymology_templates": [ { "args": { "1": "en", "2": "co", "3": "completion" }, "expansion": "co- + completion", "name": "prefix" } ], "etymology_text": "From co- + completion.", "forms": [ { "form": "cocompletions", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "cocompletion (plural cocompletions)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ { "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w" }, { "kind": "other", "name": "English terms prefixed with co-", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with entries", "parents": [], "source": "w" }, { "kind": "topical", "langcode": "en", "name": "Mathematics", "orig": "en:Mathematics", "parents": [ "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" } ], "examples": [ { "ref": "2015, Rory B. B. Lucyshyn-Wright, “Enriched algebraic theories and monads for a system of arities”, in arXiv:", "text": "We show that j satisfies this condition if and only if j presents #x5C;mathcal#x7B;V#x7D; as a free cocompletion of #x5C;mathcal#x7B;J#x7D; with respect to the weights for left Kan extensions along j, and so we call such systems of arities eleutheric.", "type": "quote" } ], "glosses": [ "A full embedding whose image is a cocomplete category and for which every functor with a cocomplete image has an extension to a cocontinuous functor that is unique up to natural isomorphism." ], "id": "en-cocompletion-en-noun-Gb3uSoQ-", "links": [ [ "mathematics", "mathematics" ], [ "embedding", "embedding" ], [ "cocomplete", "cocomplete" ], [ "category", "category" ], [ "functor", "functor" ], [ "cocontinuous", "cocontinuous" ], [ "unique", "unique" ], [ "isomorphism", "isomorphism" ] ], "raw_glosses": [ "(mathematics) A full embedding whose image is a cocomplete category and for which every functor with a cocomplete image has an extension to a cocontinuous functor that is unique up to natural isomorphism." ], "topics": [ "mathematics", "sciences" ] } ], "word": "cocompletion" }
{ "etymology_templates": [ { "args": { "1": "en", "2": "co", "3": "completion" }, "expansion": "co- + completion", "name": "prefix" } ], "etymology_text": "From co- + completion.", "forms": [ { "form": "cocompletions", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "cocompletion (plural cocompletions)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ "English countable nouns", "English entries with incorrect language header", "English lemmas", "English nouns", "English terms prefixed with co-", "English terms with quotations", "Pages with 1 entry", "Pages with entries", "en:Mathematics" ], "examples": [ { "ref": "2015, Rory B. B. Lucyshyn-Wright, “Enriched algebraic theories and monads for a system of arities”, in arXiv:", "text": "We show that j satisfies this condition if and only if j presents #x5C;mathcal#x7B;V#x7D; as a free cocompletion of #x5C;mathcal#x7B;J#x7D; with respect to the weights for left Kan extensions along j, and so we call such systems of arities eleutheric.", "type": "quote" } ], "glosses": [ "A full embedding whose image is a cocomplete category and for which every functor with a cocomplete image has an extension to a cocontinuous functor that is unique up to natural isomorphism." ], "links": [ [ "mathematics", "mathematics" ], [ "embedding", "embedding" ], [ "cocomplete", "cocomplete" ], [ "category", "category" ], [ "functor", "functor" ], [ "cocontinuous", "cocontinuous" ], [ "unique", "unique" ], [ "isomorphism", "isomorphism" ] ], "raw_glosses": [ "(mathematics) A full embedding whose image is a cocomplete category and for which every functor with a cocomplete image has an extension to a cocontinuous functor that is unique up to natural isomorphism." ], "topics": [ "mathematics", "sciences" ] } ], "word": "cocompletion" }
Download raw JSONL data for cocompletion meaning in All languages combined (1.8kB)
This page is a part of the kaikki.org machine-readable All languages combined dictionary. This dictionary is based on structured data extracted on 2024-11-06 from the enwiktionary dump dated 2024-10-02 using wiktextract (fbeafe8 and 7f03c9b). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.