"bijective" meaning in All languages combined

See bijective on Wiktionary

Adjective [English]

Rhymes: -ɛktɪv Head templates: {{en-adj|-}} bijective (not comparable)
  1. (mathematics, of a function) Associating to each element of the codomain exactly one element of the domain; establishing a perfect (one-to-one) correspondence between the elements of the domain and the codomain; (formally) both injective and surjective. Tags: not-comparable Categories (topical): Mathematics Translations (both injective and surjective): bijectiu (Catalan), 一一映射的 (yīyīyìngshède) (Chinese Mandarin), 双射的 (shuāngshède) (Chinese Mandarin), bijektivní (Czech), bijektiv (Danish), bijectief (Dutch), bijektiivinen (Finnish), bijectif (French), bijektiv (German), eineindeutig (German), bijektív (Hungarian), kölcsönösen egyértelmű (Hungarian), détheilgeach (Irish), biiettivo (Italian), bigettivo (Italian), 全単射の (zentanshano) (alt: ぜんたんしゃの) (Japanese), bijetivo (Portuguese), bijectiv (Romanian), biyectivo (Spanish), bijektiv (Swedish)
    Sense id: en-bijective-en-adj-~aCPs5ed Categories (other): English entries with incorrect language header, Entries with translation boxes, Pages with 2 entries, Pages with entries, Terms with Catalan translations, Terms with Czech translations, Terms with Danish translations, Terms with Dutch translations, Terms with Finnish translations, Terms with French translations, Terms with German translations, Terms with Hungarian translations, Terms with Irish translations, Terms with Italian translations, Terms with Japanese translations, Terms with Mandarin translations, Terms with Portuguese translations, Terms with Romanian translations, Terms with Spanish translations, Terms with Swedish translations Disambiguation of English entries with incorrect language header: 59 41 Disambiguation of Entries with translation boxes: 62 38 Disambiguation of Pages with 2 entries: 63 37 Disambiguation of Pages with entries: 62 38 Disambiguation of Terms with Catalan translations: 69 31 Disambiguation of Terms with Czech translations: 68 32 Disambiguation of Terms with Danish translations: 74 26 Disambiguation of Terms with Dutch translations: 68 32 Disambiguation of Terms with Finnish translations: 69 31 Disambiguation of Terms with French translations: 69 31 Disambiguation of Terms with German translations: 67 33 Disambiguation of Terms with Hungarian translations: 66 34 Disambiguation of Terms with Irish translations: 69 31 Disambiguation of Terms with Italian translations: 71 29 Disambiguation of Terms with Japanese translations: 71 29 Disambiguation of Terms with Mandarin translations: 69 31 Disambiguation of Terms with Portuguese translations: 71 29 Disambiguation of Terms with Romanian translations: 69 31 Disambiguation of Terms with Spanish translations: 69 31 Disambiguation of Terms with Swedish translations: 69 31 Topics: mathematics, sciences Disambiguation of 'both injective and surjective': 93 7
  2. (mathematics) Having a component that is (specified to be) a bijective map; that specifies a bijective map. Tags: not-comparable Categories (topical): Mathematics Translations (having a bijective map): bijektiivinen (Finnish)
    Sense id: en-bijective-en-adj-w6tenWLb Topics: mathematics, sciences Disambiguation of 'having a bijective map': 3 97
The following are not (yet) sense-disambiguated
Derived forms: bijective numeration, bijectively, nonbijective, bijectivity Related terms: bijection, injective, surjective, reversible

Adjective [French]

IPA: /bi.ʒɛk.tiv/
Head templates: {{head|fr|adjective form}} bijective
  1. feminine singular of bijectif Tags: feminine, form-of, singular Form of: bijectif
    Sense id: en-bijective-fr-adj-N2zjLC5G Categories (other): French entries with incorrect language header, Pages with 2 entries, Pages with entries
{
  "derived": [
    {
      "_dis1": "0 0",
      "word": "bijective numeration"
    },
    {
      "_dis1": "0 0",
      "word": "bijectively"
    },
    {
      "_dis1": "0 0",
      "word": "nonbijective"
    },
    {
      "_dis1": "0 0",
      "word": "bijectivity"
    }
  ],
  "head_templates": [
    {
      "args": {
        "1": "-"
      },
      "expansion": "bijective (not comparable)",
      "name": "en-adj"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "adj",
  "related": [
    {
      "_dis1": "0 0",
      "word": "bijection"
    },
    {
      "_dis1": "0 0",
      "word": "injective"
    },
    {
      "_dis1": "0 0",
      "word": "surjective"
    },
    {
      "_dis1": "0 0",
      "word": "reversible"
    }
  ],
  "senses": [
    {
      "categories": [
        {
          "kind": "topical",
          "langcode": "en",
          "name": "Mathematics",
          "orig": "en:Mathematics",
          "parents": [
            "Formal sciences",
            "Sciences",
            "All topics",
            "Fundamental"
          ],
          "source": "w"
        },
        {
          "_dis": "59 41",
          "kind": "other",
          "name": "English entries with incorrect language header",
          "parents": [
            "Entries with incorrect language header",
            "Entry maintenance"
          ],
          "source": "w+disamb"
        },
        {
          "_dis": "62 38",
          "kind": "other",
          "name": "Entries with translation boxes",
          "parents": [],
          "source": "w+disamb"
        },
        {
          "_dis": "63 37",
          "kind": "other",
          "name": "Pages with 2 entries",
          "parents": [],
          "source": "w+disamb"
        },
        {
          "_dis": "62 38",
          "kind": "other",
          "name": "Pages with entries",
          "parents": [],
          "source": "w+disamb"
        },
        {
          "_dis": "69 31",
          "kind": "other",
          "name": "Terms with Catalan translations",
          "parents": [],
          "source": "w+disamb"
        },
        {
          "_dis": "68 32",
          "kind": "other",
          "name": "Terms with Czech translations",
          "parents": [],
          "source": "w+disamb"
        },
        {
          "_dis": "74 26",
          "kind": "other",
          "name": "Terms with Danish translations",
          "parents": [],
          "source": "w+disamb"
        },
        {
          "_dis": "68 32",
          "kind": "other",
          "name": "Terms with Dutch translations",
          "parents": [],
          "source": "w+disamb"
        },
        {
          "_dis": "69 31",
          "kind": "other",
          "name": "Terms with Finnish translations",
          "parents": [],
          "source": "w+disamb"
        },
        {
          "_dis": "69 31",
          "kind": "other",
          "name": "Terms with French translations",
          "parents": [],
          "source": "w+disamb"
        },
        {
          "_dis": "67 33",
          "kind": "other",
          "name": "Terms with German translations",
          "parents": [],
          "source": "w+disamb"
        },
        {
          "_dis": "66 34",
          "kind": "other",
          "name": "Terms with Hungarian translations",
          "parents": [],
          "source": "w+disamb"
        },
        {
          "_dis": "69 31",
          "kind": "other",
          "name": "Terms with Irish translations",
          "parents": [],
          "source": "w+disamb"
        },
        {
          "_dis": "71 29",
          "kind": "other",
          "name": "Terms with Italian translations",
          "parents": [],
          "source": "w+disamb"
        },
        {
          "_dis": "71 29",
          "kind": "other",
          "name": "Terms with Japanese translations",
          "parents": [],
          "source": "w+disamb"
        },
        {
          "_dis": "69 31",
          "kind": "other",
          "name": "Terms with Mandarin translations",
          "parents": [],
          "source": "w+disamb"
        },
        {
          "_dis": "71 29",
          "kind": "other",
          "name": "Terms with Portuguese translations",
          "parents": [],
          "source": "w+disamb"
        },
        {
          "_dis": "69 31",
          "kind": "other",
          "name": "Terms with Romanian translations",
          "parents": [],
          "source": "w+disamb"
        },
        {
          "_dis": "69 31",
          "kind": "other",
          "name": "Terms with Spanish translations",
          "parents": [],
          "source": "w+disamb"
        },
        {
          "_dis": "69 31",
          "kind": "other",
          "name": "Terms with Swedish translations",
          "parents": [],
          "source": "w+disamb"
        }
      ],
      "examples": [
        {
          "text": "1987, James S. Royer, A Connotational Theory of Program Structure, Springer, LNCS 273, page 15,\nThen, by a straightforward, computable, bijective numerical coding, this idealized FORTRAN determines an EN. (Note: In this FORTRAN example, we could have omitted restrictions on I/O and instead used a computable, bijective, numerical coding for inputs and outputs to get another EN determined by FORTRAN.)"
        },
        {
          "text": "1993, Susan Montgomery, Hopf Algebras and Their Actions on Rings, American Mathematical Society, CBMS, Regional Conference Series in Mathematics, Number 83, page 124,\nRecent experience indicates that for infinite-dimensional Hopf algebras, the “right” definition of Galois is to require that β be bijective."
        },
        {
          "text": "2008, B. Aslan, M. T. Sakalli, E. Bulus, Classifying 8-Bit to 8-Bit S-Boxes Based on Power Mappings, Joachim von zur Gathen, José Luis Imana, Çetin Kaya Koç (editors), Arithmetic of Finite Fields: 2nd International Workshop, Springer, LNCS 5130, page 131,\nGenerally, there is a parallel relation between the maximum differential value and maximum LAT value for bijective S-boxes."
        },
        {
          "ref": "2010, Kang Feng, Mengzhao Qin, Symplectic Geometric Algorithms for Hamiltonian Systems, Springer, page 39:",
          "text": "An isomorphism is a bijective homomorphism.",
          "type": "quote"
        },
        {
          "text": "2012 [Introduction to Graph Theory, McGraw-Hill], Gary Chartrand, Ping Zhang, A First Course in Graph Theory, 2013, Dover, Revised and corrected republication, page 64,\nThe proof that isomorphism is an equivalence relation relies on three fundamental properties of bijective functions (functions that are one-to-one and onto): (1) every identity function is bijective, (2) the inverse of every bijective function is also bijective, (3) the composition of two bijective functions is bijective."
        }
      ],
      "glosses": [
        "Associating to each element of the codomain exactly one element of the domain; establishing a perfect (one-to-one) correspondence between the elements of the domain and the codomain; (formally) both injective and surjective."
      ],
      "id": "en-bijective-en-adj-~aCPs5ed",
      "links": [
        [
          "mathematics",
          "mathematics"
        ],
        [
          "function",
          "function"
        ],
        [
          "codomain",
          "codomain"
        ],
        [
          "domain",
          "domain"
        ],
        [
          "one-to-one",
          "one-to-one"
        ],
        [
          "injective",
          "injective"
        ],
        [
          "surjective",
          "surjective"
        ]
      ],
      "raw_glosses": [
        "(mathematics, of a function) Associating to each element of the codomain exactly one element of the domain; establishing a perfect (one-to-one) correspondence between the elements of the domain and the codomain; (formally) both injective and surjective."
      ],
      "raw_tags": [
        "of a function"
      ],
      "tags": [
        "not-comparable"
      ],
      "topics": [
        "mathematics",
        "sciences"
      ],
      "translations": [
        {
          "_dis1": "93 7",
          "code": "ca",
          "lang": "Catalan",
          "sense": "both injective and surjective",
          "word": "bijectiu"
        },
        {
          "_dis1": "93 7",
          "code": "cmn",
          "lang": "Chinese Mandarin",
          "roman": "yīyīyìngshède",
          "sense": "both injective and surjective",
          "word": "一一映射的"
        },
        {
          "_dis1": "93 7",
          "code": "cmn",
          "lang": "Chinese Mandarin",
          "roman": "shuāngshède",
          "sense": "both injective and surjective",
          "word": "双射的"
        },
        {
          "_dis1": "93 7",
          "code": "cs",
          "lang": "Czech",
          "sense": "both injective and surjective",
          "word": "bijektivní"
        },
        {
          "_dis1": "93 7",
          "code": "da",
          "lang": "Danish",
          "sense": "both injective and surjective",
          "word": "bijektiv"
        },
        {
          "_dis1": "93 7",
          "code": "nl",
          "lang": "Dutch",
          "sense": "both injective and surjective",
          "word": "bijectief"
        },
        {
          "_dis1": "93 7",
          "code": "fi",
          "lang": "Finnish",
          "sense": "both injective and surjective",
          "word": "bijektiivinen"
        },
        {
          "_dis1": "93 7",
          "code": "fr",
          "lang": "French",
          "sense": "both injective and surjective",
          "word": "bijectif"
        },
        {
          "_dis1": "93 7",
          "code": "de",
          "lang": "German",
          "sense": "both injective and surjective",
          "word": "bijektiv"
        },
        {
          "_dis1": "93 7",
          "code": "de",
          "lang": "German",
          "sense": "both injective and surjective",
          "word": "eineindeutig"
        },
        {
          "_dis1": "93 7",
          "code": "hu",
          "lang": "Hungarian",
          "sense": "both injective and surjective",
          "word": "bijektív"
        },
        {
          "_dis1": "93 7",
          "code": "hu",
          "lang": "Hungarian",
          "sense": "both injective and surjective",
          "word": "kölcsönösen egyértelmű"
        },
        {
          "_dis1": "93 7",
          "code": "ga",
          "lang": "Irish",
          "sense": "both injective and surjective",
          "word": "détheilgeach"
        },
        {
          "_dis1": "93 7",
          "code": "it",
          "lang": "Italian",
          "sense": "both injective and surjective",
          "word": "biiettivo"
        },
        {
          "_dis1": "93 7",
          "code": "it",
          "lang": "Italian",
          "sense": "both injective and surjective",
          "word": "bigettivo"
        },
        {
          "_dis1": "93 7",
          "alt": "ぜんたんしゃの",
          "code": "ja",
          "lang": "Japanese",
          "roman": "zentanshano",
          "sense": "both injective and surjective",
          "word": "全単射の"
        },
        {
          "_dis1": "93 7",
          "code": "pt",
          "lang": "Portuguese",
          "sense": "both injective and surjective",
          "word": "bijetivo"
        },
        {
          "_dis1": "93 7",
          "code": "ro",
          "lang": "Romanian",
          "sense": "both injective and surjective",
          "word": "bijectiv"
        },
        {
          "_dis1": "93 7",
          "code": "es",
          "lang": "Spanish",
          "sense": "both injective and surjective",
          "word": "biyectivo"
        },
        {
          "_dis1": "93 7",
          "code": "sv",
          "lang": "Swedish",
          "sense": "both injective and surjective",
          "word": "bijektiv"
        }
      ]
    },
    {
      "categories": [
        {
          "kind": "topical",
          "langcode": "en",
          "name": "Mathematics",
          "orig": "en:Mathematics",
          "parents": [
            "Formal sciences",
            "Sciences",
            "All topics",
            "Fundamental"
          ],
          "source": "w"
        }
      ],
      "examples": [
        {
          "ref": "2002, Proceedings of the 34th Annual ACM Symposium on the Theory of Computing, ACM Press, page 774:",
          "text": "Proving the conjecture is equivalent to constructing a PCP that reads 2 symbols and accepts iff these symbols satisfy a bijective constraint.",
          "type": "quote"
        }
      ],
      "glosses": [
        "Having a component that is (specified to be) a bijective map; that specifies a bijective map."
      ],
      "id": "en-bijective-en-adj-w6tenWLb",
      "links": [
        [
          "mathematics",
          "mathematics"
        ]
      ],
      "raw_glosses": [
        "(mathematics) Having a component that is (specified to be) a bijective map; that specifies a bijective map."
      ],
      "tags": [
        "not-comparable"
      ],
      "topics": [
        "mathematics",
        "sciences"
      ],
      "translations": [
        {
          "_dis1": "3 97",
          "code": "fi",
          "lang": "Finnish",
          "sense": "having a bijective map",
          "word": "bijektiivinen"
        }
      ]
    }
  ],
  "sounds": [
    {
      "rhymes": "-ɛktɪv"
    }
  ],
  "wikipedia": [
    "Bijection"
  ],
  "word": "bijective"
}

{
  "head_templates": [
    {
      "args": {
        "1": "fr",
        "2": "adjective form"
      },
      "expansion": "bijective",
      "name": "head"
    }
  ],
  "lang": "French",
  "lang_code": "fr",
  "pos": "adj",
  "senses": [
    {
      "categories": [
        {
          "kind": "other",
          "name": "French entries with incorrect language header",
          "parents": [
            "Entries with incorrect language header",
            "Entry maintenance"
          ],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with 2 entries",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with entries",
          "parents": [],
          "source": "w"
        }
      ],
      "form_of": [
        {
          "word": "bijectif"
        }
      ],
      "glosses": [
        "feminine singular of bijectif"
      ],
      "id": "en-bijective-fr-adj-N2zjLC5G",
      "links": [
        [
          "bijectif",
          "bijectif#French"
        ]
      ],
      "tags": [
        "feminine",
        "form-of",
        "singular"
      ]
    }
  ],
  "sounds": [
    {
      "ipa": "/bi.ʒɛk.tiv/"
    },
    {
      "homophone": "bijectives"
    }
  ],
  "word": "bijective"
}
{
  "categories": [
    "English adjectives",
    "English entries with incorrect language header",
    "English lemmas",
    "English uncomparable adjectives",
    "Entries with translation boxes",
    "Pages with 2 entries",
    "Pages with entries",
    "Rhymes:English/ɛktɪv",
    "Rhymes:English/ɛktɪv/3 syllables",
    "Terms with Catalan translations",
    "Terms with Czech translations",
    "Terms with Danish translations",
    "Terms with Dutch translations",
    "Terms with Finnish translations",
    "Terms with French translations",
    "Terms with German translations",
    "Terms with Hungarian translations",
    "Terms with Irish translations",
    "Terms with Italian translations",
    "Terms with Japanese translations",
    "Terms with Mandarin translations",
    "Terms with Portuguese translations",
    "Terms with Romanian translations",
    "Terms with Spanish translations",
    "Terms with Swedish translations"
  ],
  "derived": [
    {
      "word": "bijective numeration"
    },
    {
      "word": "bijectively"
    },
    {
      "word": "nonbijective"
    },
    {
      "word": "bijectivity"
    }
  ],
  "head_templates": [
    {
      "args": {
        "1": "-"
      },
      "expansion": "bijective (not comparable)",
      "name": "en-adj"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "adj",
  "related": [
    {
      "word": "bijection"
    },
    {
      "word": "injective"
    },
    {
      "word": "surjective"
    },
    {
      "word": "reversible"
    }
  ],
  "senses": [
    {
      "categories": [
        "English terms with quotations",
        "en:Mathematics"
      ],
      "examples": [
        {
          "text": "1987, James S. Royer, A Connotational Theory of Program Structure, Springer, LNCS 273, page 15,\nThen, by a straightforward, computable, bijective numerical coding, this idealized FORTRAN determines an EN. (Note: In this FORTRAN example, we could have omitted restrictions on I/O and instead used a computable, bijective, numerical coding for inputs and outputs to get another EN determined by FORTRAN.)"
        },
        {
          "text": "1993, Susan Montgomery, Hopf Algebras and Their Actions on Rings, American Mathematical Society, CBMS, Regional Conference Series in Mathematics, Number 83, page 124,\nRecent experience indicates that for infinite-dimensional Hopf algebras, the “right” definition of Galois is to require that β be bijective."
        },
        {
          "text": "2008, B. Aslan, M. T. Sakalli, E. Bulus, Classifying 8-Bit to 8-Bit S-Boxes Based on Power Mappings, Joachim von zur Gathen, José Luis Imana, Çetin Kaya Koç (editors), Arithmetic of Finite Fields: 2nd International Workshop, Springer, LNCS 5130, page 131,\nGenerally, there is a parallel relation between the maximum differential value and maximum LAT value for bijective S-boxes."
        },
        {
          "ref": "2010, Kang Feng, Mengzhao Qin, Symplectic Geometric Algorithms for Hamiltonian Systems, Springer, page 39:",
          "text": "An isomorphism is a bijective homomorphism.",
          "type": "quote"
        },
        {
          "text": "2012 [Introduction to Graph Theory, McGraw-Hill], Gary Chartrand, Ping Zhang, A First Course in Graph Theory, 2013, Dover, Revised and corrected republication, page 64,\nThe proof that isomorphism is an equivalence relation relies on three fundamental properties of bijective functions (functions that are one-to-one and onto): (1) every identity function is bijective, (2) the inverse of every bijective function is also bijective, (3) the composition of two bijective functions is bijective."
        }
      ],
      "glosses": [
        "Associating to each element of the codomain exactly one element of the domain; establishing a perfect (one-to-one) correspondence between the elements of the domain and the codomain; (formally) both injective and surjective."
      ],
      "links": [
        [
          "mathematics",
          "mathematics"
        ],
        [
          "function",
          "function"
        ],
        [
          "codomain",
          "codomain"
        ],
        [
          "domain",
          "domain"
        ],
        [
          "one-to-one",
          "one-to-one"
        ],
        [
          "injective",
          "injective"
        ],
        [
          "surjective",
          "surjective"
        ]
      ],
      "raw_glosses": [
        "(mathematics, of a function) Associating to each element of the codomain exactly one element of the domain; establishing a perfect (one-to-one) correspondence between the elements of the domain and the codomain; (formally) both injective and surjective."
      ],
      "raw_tags": [
        "of a function"
      ],
      "tags": [
        "not-comparable"
      ],
      "topics": [
        "mathematics",
        "sciences"
      ]
    },
    {
      "categories": [
        "English terms with quotations",
        "Quotation templates to be cleaned",
        "en:Mathematics"
      ],
      "examples": [
        {
          "ref": "2002, Proceedings of the 34th Annual ACM Symposium on the Theory of Computing, ACM Press, page 774:",
          "text": "Proving the conjecture is equivalent to constructing a PCP that reads 2 symbols and accepts iff these symbols satisfy a bijective constraint.",
          "type": "quote"
        }
      ],
      "glosses": [
        "Having a component that is (specified to be) a bijective map; that specifies a bijective map."
      ],
      "links": [
        [
          "mathematics",
          "mathematics"
        ]
      ],
      "raw_glosses": [
        "(mathematics) Having a component that is (specified to be) a bijective map; that specifies a bijective map."
      ],
      "tags": [
        "not-comparable"
      ],
      "topics": [
        "mathematics",
        "sciences"
      ]
    }
  ],
  "sounds": [
    {
      "rhymes": "-ɛktɪv"
    }
  ],
  "translations": [
    {
      "code": "ca",
      "lang": "Catalan",
      "sense": "both injective and surjective",
      "word": "bijectiu"
    },
    {
      "code": "cmn",
      "lang": "Chinese Mandarin",
      "roman": "yīyīyìngshède",
      "sense": "both injective and surjective",
      "word": "一一映射的"
    },
    {
      "code": "cmn",
      "lang": "Chinese Mandarin",
      "roman": "shuāngshède",
      "sense": "both injective and surjective",
      "word": "双射的"
    },
    {
      "code": "cs",
      "lang": "Czech",
      "sense": "both injective and surjective",
      "word": "bijektivní"
    },
    {
      "code": "da",
      "lang": "Danish",
      "sense": "both injective and surjective",
      "word": "bijektiv"
    },
    {
      "code": "nl",
      "lang": "Dutch",
      "sense": "both injective and surjective",
      "word": "bijectief"
    },
    {
      "code": "fi",
      "lang": "Finnish",
      "sense": "both injective and surjective",
      "word": "bijektiivinen"
    },
    {
      "code": "fr",
      "lang": "French",
      "sense": "both injective and surjective",
      "word": "bijectif"
    },
    {
      "code": "de",
      "lang": "German",
      "sense": "both injective and surjective",
      "word": "bijektiv"
    },
    {
      "code": "de",
      "lang": "German",
      "sense": "both injective and surjective",
      "word": "eineindeutig"
    },
    {
      "code": "hu",
      "lang": "Hungarian",
      "sense": "both injective and surjective",
      "word": "bijektív"
    },
    {
      "code": "hu",
      "lang": "Hungarian",
      "sense": "both injective and surjective",
      "word": "kölcsönösen egyértelmű"
    },
    {
      "code": "ga",
      "lang": "Irish",
      "sense": "both injective and surjective",
      "word": "détheilgeach"
    },
    {
      "code": "it",
      "lang": "Italian",
      "sense": "both injective and surjective",
      "word": "biiettivo"
    },
    {
      "code": "it",
      "lang": "Italian",
      "sense": "both injective and surjective",
      "word": "bigettivo"
    },
    {
      "alt": "ぜんたんしゃの",
      "code": "ja",
      "lang": "Japanese",
      "roman": "zentanshano",
      "sense": "both injective and surjective",
      "word": "全単射の"
    },
    {
      "code": "pt",
      "lang": "Portuguese",
      "sense": "both injective and surjective",
      "word": "bijetivo"
    },
    {
      "code": "ro",
      "lang": "Romanian",
      "sense": "both injective and surjective",
      "word": "bijectiv"
    },
    {
      "code": "es",
      "lang": "Spanish",
      "sense": "both injective and surjective",
      "word": "biyectivo"
    },
    {
      "code": "sv",
      "lang": "Swedish",
      "sense": "both injective and surjective",
      "word": "bijektiv"
    },
    {
      "code": "fi",
      "lang": "Finnish",
      "sense": "having a bijective map",
      "word": "bijektiivinen"
    }
  ],
  "wikipedia": [
    "Bijection"
  ],
  "word": "bijective"
}

{
  "head_templates": [
    {
      "args": {
        "1": "fr",
        "2": "adjective form"
      },
      "expansion": "bijective",
      "name": "head"
    }
  ],
  "lang": "French",
  "lang_code": "fr",
  "pos": "adj",
  "senses": [
    {
      "categories": [
        "French 3-syllable words",
        "French adjective forms",
        "French entries with incorrect language header",
        "French non-lemma forms",
        "French terms with IPA pronunciation",
        "French terms with homophones",
        "Pages with 2 entries",
        "Pages with entries"
      ],
      "form_of": [
        {
          "word": "bijectif"
        }
      ],
      "glosses": [
        "feminine singular of bijectif"
      ],
      "links": [
        [
          "bijectif",
          "bijectif#French"
        ]
      ],
      "tags": [
        "feminine",
        "form-of",
        "singular"
      ]
    }
  ],
  "sounds": [
    {
      "ipa": "/bi.ʒɛk.tiv/"
    },
    {
      "homophone": "bijectives"
    }
  ],
  "word": "bijective"
}

Download raw JSONL data for bijective meaning in All languages combined (7.6kB)


This page is a part of the kaikki.org machine-readable All languages combined dictionary. This dictionary is based on structured data extracted on 2024-11-28 from the enwiktionary dump dated 2024-11-21 using wiktextract (65a6e81 and 0dbea76). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.

If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.