"accumulation point" meaning in Anglais

See accumulation point in All languages combined, or Wiktionary

Noun

Forms: accumulation points [plural]
  1. Point d’accumulation.
    Sense id: fr-accumulation_point-en-noun-G9NBOIP1 Categories (other): Exemples en anglais, Exemples en anglais à traduire, Lexique en anglais de la topologie Topics: topology
  2. Point au-delà duquel les orbites périodiques deviennent chaotiques.
    Sense id: fr-accumulation_point-en-noun--6GLJfTW Categories (other): Exemples en anglais, Exemples en anglais à traduire
The following are not (yet) sense-disambiguated
Synonyms: cluster point Hypernyms: limit point Derived forms: complete accumulation point
{
  "antonyms": [
    {
      "word": "isolated point"
    }
  ],
  "categories": [
    {
      "kind": "other",
      "name": "Locutions nominales en anglais",
      "parents": [],
      "source": "w"
    },
    {
      "kind": "other",
      "name": "Anglais",
      "orig": "anglais",
      "parents": [],
      "source": "w"
    }
  ],
  "derived": [
    {
      "word": "complete accumulation point"
    }
  ],
  "forms": [
    {
      "form": "accumulation points",
      "tags": [
        "plural"
      ]
    }
  ],
  "hypernyms": [
    {
      "word": "limit point"
    }
  ],
  "lang": "Anglais",
  "lang_code": "en",
  "pos": "noun",
  "pos_title": "Locution nominale",
  "senses": [
    {
      "categories": [
        {
          "kind": "other",
          "name": "Exemples en anglais",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Exemples en anglais à traduire",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Lexique en anglais de la topologie",
          "parents": [],
          "source": "w"
        }
      ],
      "examples": [
        {
          "bold_text_offsets": [
            [
              76,
              94
            ]
          ],
          "ref": "Bert Mendelson, Introduction to Topology, Dover Publications, Inc., New York, 1990, 3ᵉ édition (1ʳᵉ édition 1975), page 173, ISBN 0-486-66352-3 (OCLC 932232056), § 5.3",
          "text": "LEMMA 5.2 Let X be a Hausdorff space and A a subset of X. A point a∈X is an accumulation point of A if and only if a is a limit point of A."
        },
        {
          "text": "{{exemple|A set A has an accumulation pointp if for every ϵ>0 there is an x∈A with x ne p and |x-p|<ϵ. Informally, p is an accumulation point of A if there are points of A that are arbitrarily close to p. Note that the fact that p is an accumulation point of the set A has nothing to do with whether p is actually an element of A. For example, the set A=n∈ℕ} has one accumulation point, 0, because for every ϵ>0 there is an n∈ℕ with 1/n<ϵ. Here the accumulation point 0 is not an element of the set A."
        }
      ],
      "glosses": [
        "Point d’accumulation."
      ],
      "id": "fr-accumulation_point-en-noun-G9NBOIP1",
      "topics": [
        "topology"
      ]
    },
    {
      "categories": [
        {
          "kind": "other",
          "name": "Exemples en anglais",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Exemples en anglais à traduire",
          "parents": [],
          "source": "w"
        }
      ],
      "examples": [
        {
          "bold_text_offsets": [
            [
              71,
              89
            ],
            [
              253,
              271
            ],
            [
              385,
              403
            ]
          ],
          "ref": "Milos Marek, Igor Schreiber, Chaotic Behaviour of Deterministic Dissipative Systems, Cambridge University Press, 1995, page 77",
          "text": "The chaotic set (not necessarily attracting) is formed after the first accumulation point (a_∞≈3.570 for the logistic mapping) is reached. In the chaotic region of the logistic map the periodicity re-emerges in periodic windows which are bounded by the accumulation point from the right and by the saddle-node bifurcation from the left. A reverse bifurcation sequence occurs above the accumulation point."
        }
      ],
      "glosses": [
        "Point au-delà duquel les orbites périodiques deviennent chaotiques."
      ],
      "id": "fr-accumulation_point-en-noun--6GLJfTW",
      "raw_tags": [
        "Dynamique des systèmes"
      ]
    }
  ],
  "synonyms": [
    {
      "word": "cluster point"
    }
  ],
  "word": "accumulation point"
}
{
  "antonyms": [
    {
      "word": "isolated point"
    }
  ],
  "categories": [
    "Locutions nominales en anglais",
    "anglais"
  ],
  "derived": [
    {
      "word": "complete accumulation point"
    }
  ],
  "forms": [
    {
      "form": "accumulation points",
      "tags": [
        "plural"
      ]
    }
  ],
  "hypernyms": [
    {
      "word": "limit point"
    }
  ],
  "lang": "Anglais",
  "lang_code": "en",
  "pos": "noun",
  "pos_title": "Locution nominale",
  "senses": [
    {
      "categories": [
        "Exemples en anglais",
        "Exemples en anglais à traduire",
        "Lexique en anglais de la topologie"
      ],
      "examples": [
        {
          "bold_text_offsets": [
            [
              76,
              94
            ]
          ],
          "ref": "Bert Mendelson, Introduction to Topology, Dover Publications, Inc., New York, 1990, 3ᵉ édition (1ʳᵉ édition 1975), page 173, ISBN 0-486-66352-3 (OCLC 932232056), § 5.3",
          "text": "LEMMA 5.2 Let X be a Hausdorff space and A a subset of X. A point a∈X is an accumulation point of A if and only if a is a limit point of A."
        },
        {
          "text": "{{exemple|A set A has an accumulation pointp if for every ϵ>0 there is an x∈A with x ne p and |x-p|<ϵ. Informally, p is an accumulation point of A if there are points of A that are arbitrarily close to p. Note that the fact that p is an accumulation point of the set A has nothing to do with whether p is actually an element of A. For example, the set A=n∈ℕ} has one accumulation point, 0, because for every ϵ>0 there is an n∈ℕ with 1/n<ϵ. Here the accumulation point 0 is not an element of the set A."
        }
      ],
      "glosses": [
        "Point d’accumulation."
      ],
      "topics": [
        "topology"
      ]
    },
    {
      "categories": [
        "Exemples en anglais",
        "Exemples en anglais à traduire"
      ],
      "examples": [
        {
          "bold_text_offsets": [
            [
              71,
              89
            ],
            [
              253,
              271
            ],
            [
              385,
              403
            ]
          ],
          "ref": "Milos Marek, Igor Schreiber, Chaotic Behaviour of Deterministic Dissipative Systems, Cambridge University Press, 1995, page 77",
          "text": "The chaotic set (not necessarily attracting) is formed after the first accumulation point (a_∞≈3.570 for the logistic mapping) is reached. In the chaotic region of the logistic map the periodicity re-emerges in periodic windows which are bounded by the accumulation point from the right and by the saddle-node bifurcation from the left. A reverse bifurcation sequence occurs above the accumulation point."
        }
      ],
      "glosses": [
        "Point au-delà duquel les orbites périodiques deviennent chaotiques."
      ],
      "raw_tags": [
        "Dynamique des systèmes"
      ]
    }
  ],
  "synonyms": [
    {
      "word": "cluster point"
    }
  ],
  "word": "accumulation point"
}

Download raw JSONL data for accumulation point meaning in Anglais (2.3kB)


This page is a part of the kaikki.org machine-readable Anglais dictionary. This dictionary is based on structured data extracted on 2025-04-10 from the frwiktionary dump dated 2025-04-03 using wiktextract (74c5344 and fb63907). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.

If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.