See Christoffel symbol in All languages combined, or Wiktionary
{ "etymology_text": "Named for Elwin Bruno Christoffel (1829–1900).", "forms": [ { "form": "Christoffel symbols", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "Christoffel symbol (plural Christoffel symbols)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ { "kind": "other", "name": "English entries with incorrect language header", "parents": [], "source": "w" }, { "kind": "other", "name": "Entries with translation boxes", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with entries", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with Bulgarian translations", "parents": [], "source": "w" }, { "kind": "other", "langcode": "en", "name": "Differential geometry", "orig": "en:Differential geometry", "parents": [], "source": "w" } ], "examples": [ { "text": "⃑x_uu\\⃑x_uv\\⃑x_vv=ΓᵤᵤᵘΓᵤᵤᵛl\\ΓᵤᵥᵘΓᵤᵥᵛm\\ΓᵥᵥᵘΓᵥᵥᵛn⃑x_u\\⃑x_v\\⃑n" } ], "glosses": [ "For a surface with parametrization ⃑x(u,v), and letting i,j,k∈u,v, the Christoffel symbol Γᵢⱼᵏ is the component of the second derivative ⃑x_ij in the direction of the first derivative ⃑x_k, and it encodes information about the surface's curvature. Thus," ], "id": "en-Christoffel_symbol-en-noun-j-X6kiiY", "links": [ [ "differential geometry", "differential geometry" ] ], "qualifier": "differential geometry", "raw_glosses": [ "(differential geometry) For a surface with parametrization ⃑x(u,v), and letting i,j,k∈u,v, the Christoffel symbol Γᵢⱼᵏ is the component of the second derivative ⃑x_ij in the direction of the first derivative ⃑x_k, and it encodes information about the surface's curvature. Thus," ], "translations": [ { "code": "bg", "lang": "Bulgarian", "roman": "simvol na Kristofel", "sense": "component of second derivative", "tags": [ "masculine" ], "word": "символ на Кристофел" } ], "wikipedia": [ "Christoffel symbol" ] } ], "word": "Christoffel symbol" }
{ "etymology_text": "Named for Elwin Bruno Christoffel (1829–1900).", "forms": [ { "form": "Christoffel symbols", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "Christoffel symbol (plural Christoffel symbols)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ "English countable nouns", "English entries with incorrect language header", "English eponyms", "English lemmas", "English multiword terms", "English nouns", "Entries with translation boxes", "Pages with 1 entry", "Pages with entries", "Terms with Bulgarian translations", "en:Differential geometry" ], "examples": [ { "text": "⃑x_uu\\⃑x_uv\\⃑x_vv=ΓᵤᵤᵘΓᵤᵤᵛl\\ΓᵤᵥᵘΓᵤᵥᵛm\\ΓᵥᵥᵘΓᵥᵥᵛn⃑x_u\\⃑x_v\\⃑n" } ], "glosses": [ "For a surface with parametrization ⃑x(u,v), and letting i,j,k∈u,v, the Christoffel symbol Γᵢⱼᵏ is the component of the second derivative ⃑x_ij in the direction of the first derivative ⃑x_k, and it encodes information about the surface's curvature. Thus," ], "links": [ [ "differential geometry", "differential geometry" ] ], "qualifier": "differential geometry", "raw_glosses": [ "(differential geometry) For a surface with parametrization ⃑x(u,v), and letting i,j,k∈u,v, the Christoffel symbol Γᵢⱼᵏ is the component of the second derivative ⃑x_ij in the direction of the first derivative ⃑x_k, and it encodes information about the surface's curvature. Thus," ], "wikipedia": [ "Christoffel symbol" ] } ], "translations": [ { "code": "bg", "lang": "Bulgarian", "roman": "simvol na Kristofel", "sense": "component of second derivative", "tags": [ "masculine" ], "word": "символ на Кристофел" } ], "word": "Christoffel symbol" }
Download raw JSONL data for Christoffel symbol meaning in English (1.7kB)
This page is a part of the kaikki.org machine-readable English dictionary. This dictionary is based on structured data extracted on 2025-06-18 from the enwiktionary dump dated 2025-06-01 using wiktextract (074e7de and f1c2b61). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.