See Bremermann's limit in All languages combined, or Wiktionary
{ "etymology_text": "Named after Hans-Joachim Bremermann (1926–1996), German-American mathematician and biophysicist.", "head_templates": [ { "args": {}, "expansion": "Bremermann's limit", "name": "en-proper noun" } ], "lang": "English", "lang_code": "en", "pos": "name", "senses": [ { "categories": [ { "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w" }, { "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with entries", "parents": [], "source": "w" } ], "glosses": [ "The maximum computational speed of a self-contained system in the material universe, derived from Einstein's mass-energy equivalency and the Heisenberg uncertainty principle: it is approximately 1.36 × 10⁵⁰ bits per second per kilogram. This value is important in designing cryptographic algorithms that can never be cracked by brute force." ], "id": "en-Bremermann's_limit-en-name-ObKc9c56", "links": [ [ "maximum", "maximum" ], [ "computational", "computational" ], [ "speed", "speed" ], [ "system", "system" ], [ "material", "material" ], [ "universe", "universe" ], [ "mass", "mass" ], [ "energy", "energy" ], [ "equivalency", "equivalency" ], [ "Heisenberg uncertainty principle", "Heisenberg uncertainty principle" ], [ "bit", "bit" ], [ "second", "second" ], [ "kilogram", "kilogram" ], [ "cryptographic", "cryptographic" ], [ "algorithm", "algorithm" ], [ "crack", "crack" ], [ "brute force", "brute force" ] ], "wikipedia": [ "Bremermann's limit", "Hans-Joachim Bremermann" ] } ], "word": "Bremermann's limit" }
{ "etymology_text": "Named after Hans-Joachim Bremermann (1926–1996), German-American mathematician and biophysicist.", "head_templates": [ { "args": {}, "expansion": "Bremermann's limit", "name": "en-proper noun" } ], "lang": "English", "lang_code": "en", "pos": "name", "senses": [ { "categories": [ "English entries with incorrect language header", "English eponyms", "English lemmas", "English multiword terms", "English proper nouns", "English uncountable nouns", "Pages with 1 entry", "Pages with entries" ], "glosses": [ "The maximum computational speed of a self-contained system in the material universe, derived from Einstein's mass-energy equivalency and the Heisenberg uncertainty principle: it is approximately 1.36 × 10⁵⁰ bits per second per kilogram. This value is important in designing cryptographic algorithms that can never be cracked by brute force." ], "links": [ [ "maximum", "maximum" ], [ "computational", "computational" ], [ "speed", "speed" ], [ "system", "system" ], [ "material", "material" ], [ "universe", "universe" ], [ "mass", "mass" ], [ "energy", "energy" ], [ "equivalency", "equivalency" ], [ "Heisenberg uncertainty principle", "Heisenberg uncertainty principle" ], [ "bit", "bit" ], [ "second", "second" ], [ "kilogram", "kilogram" ], [ "cryptographic", "cryptographic" ], [ "algorithm", "algorithm" ], [ "crack", "crack" ], [ "brute force", "brute force" ] ], "wikipedia": [ "Bremermann's limit", "Hans-Joachim Bremermann" ] } ], "word": "Bremermann's limit" }
Download raw JSONL data for Bremermann's limit meaning in English (1.4kB)
This page is a part of the kaikki.org machine-readable English dictionary. This dictionary is based on structured data extracted on 2025-01-08 from the enwiktionary dump dated 2025-01-01 using wiktextract (9a96ef4 and 4ed51a5). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.