See aritmetikkens fundamentalsætning in All languages combined, or Wiktionary
{ "head_templates": [ { "args": { "1": "da", "2": "proper noun", "3": "", "4": "", "g": "", "head": "" }, "expansion": "aritmetikkens fundamentalsætning", "name": "head" }, { "args": {}, "expansion": "aritmetikkens fundamentalsætning", "name": "da-proper noun" } ], "lang": "Danish", "lang_code": "da", "pos": "name", "senses": [ { "categories": [ { "kind": "other", "name": "Danish entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w" }, { "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with entries", "parents": [], "source": "w" }, { "kind": "topical", "langcode": "da", "name": "Number theory", "orig": "da:Number theory", "parents": [ "Mathematics", "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" } ], "examples": [ { "english": "The foundation was the fundamental theorem of arithmetic, which states that any natural number can be uniquely resolved into prime factors.", "ref": "2008, Matematik for lærerstuderende - Omega, Samfundslitteratur, →ISBN, page 403:", "text": "Fundamentet bestod i aritmetikkens fundamentalsætning, der siger, at ethvert naturligt tal på entydig vis kan opløses i primfaktorer.", "type": "quote" }, { "english": "In all the above arguments, the fundamental theorem of arithmetic is a key ingredient.", "ref": "2013, Hans Anton Salomonsen, Matematiske mysterier: Historien, forklaringerne og løsningerne, ISD LLC, →ISBN, page 196:", "text": "I alle ovenstående argumenter er Aritmetikkens Fundamentalsætning en nøgleingrediens.", "type": "quote" }, { "english": "In this section, we will see how, using the fundamental theorem of arithmetic, one can, for an arbitrary natural number n with a known prime-factor resolution can both determine the divisors of n, the number of divisors of n, and the sum of the divisors of n.", "ref": "2014, Gunnar Bomann, TAL OG ALGEBRA med historisk tilgang: Bog 2 Tal og algebra, BoD – Books on Demand, →ISBN, page 219:", "text": "Vi vil i dette afsnit se, hvorledes man ved hjælp af aritmetikkens fundamentalsætning for et vilkårligt naturligt tal n med kendt primfaktoropløsning dels kan bestemme divisorerne i n, dels antallet af divisorer i n, og dels summen af divisorerne i n.", "type": "quote" } ], "glosses": [ "fundamental theorem of arithmetic" ], "id": "en-aritmetikkens_fundamentalsætning-da-name-IvXokbjX", "links": [ [ "number theory", "number theory" ], [ "fundamental theorem of arithmetic", "fundamental theorem of arithmetic" ] ], "raw_glosses": [ "(number theory) fundamental theorem of arithmetic" ], "topics": [ "mathematics", "number-theory", "sciences" ] } ], "word": "aritmetikkens fundamentalsætning" }
{ "head_templates": [ { "args": { "1": "da", "2": "proper noun", "3": "", "4": "", "g": "", "head": "" }, "expansion": "aritmetikkens fundamentalsætning", "name": "head" }, { "args": {}, "expansion": "aritmetikkens fundamentalsætning", "name": "da-proper noun" } ], "lang": "Danish", "lang_code": "da", "pos": "name", "senses": [ { "categories": [ "Danish entries with incorrect language header", "Danish lemmas", "Danish multiword terms", "Danish proper nouns", "Danish terms with quotations", "Pages with 1 entry", "Pages with entries", "da:Number theory" ], "examples": [ { "english": "The foundation was the fundamental theorem of arithmetic, which states that any natural number can be uniquely resolved into prime factors.", "ref": "2008, Matematik for lærerstuderende - Omega, Samfundslitteratur, →ISBN, page 403:", "text": "Fundamentet bestod i aritmetikkens fundamentalsætning, der siger, at ethvert naturligt tal på entydig vis kan opløses i primfaktorer.", "type": "quote" }, { "english": "In all the above arguments, the fundamental theorem of arithmetic is a key ingredient.", "ref": "2013, Hans Anton Salomonsen, Matematiske mysterier: Historien, forklaringerne og løsningerne, ISD LLC, →ISBN, page 196:", "text": "I alle ovenstående argumenter er Aritmetikkens Fundamentalsætning en nøgleingrediens.", "type": "quote" }, { "english": "In this section, we will see how, using the fundamental theorem of arithmetic, one can, for an arbitrary natural number n with a known prime-factor resolution can both determine the divisors of n, the number of divisors of n, and the sum of the divisors of n.", "ref": "2014, Gunnar Bomann, TAL OG ALGEBRA med historisk tilgang: Bog 2 Tal og algebra, BoD – Books on Demand, →ISBN, page 219:", "text": "Vi vil i dette afsnit se, hvorledes man ved hjælp af aritmetikkens fundamentalsætning for et vilkårligt naturligt tal n med kendt primfaktoropløsning dels kan bestemme divisorerne i n, dels antallet af divisorer i n, og dels summen af divisorerne i n.", "type": "quote" } ], "glosses": [ "fundamental theorem of arithmetic" ], "links": [ [ "number theory", "number theory" ], [ "fundamental theorem of arithmetic", "fundamental theorem of arithmetic" ] ], "raw_glosses": [ "(number theory) fundamental theorem of arithmetic" ], "topics": [ "mathematics", "number-theory", "sciences" ] } ], "word": "aritmetikkens fundamentalsætning" }
Download raw JSONL data for aritmetikkens fundamentalsætning meaning in Danish (2.3kB)
This page is a part of the kaikki.org machine-readable Danish dictionary. This dictionary is based on structured data extracted on 2025-02-12 from the enwiktionary dump dated 2025-02-02 using wiktextract (1c4b89b and 9dbd323). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.