See von Neumann entropy on Wiktionary
{ "etymology_text": "Named after John von Neumann.", "head_templates": [ { "args": { "1": "?", "head": "von Neumann entropy" }, "expansion": "von Neumann entropy", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ { "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w" }, { "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with entries", "parents": [], "source": "w" }, { "kind": "topical", "langcode": "en", "name": "Quantum mechanics", "orig": "en:Quantum mechanics", "parents": [ "Physics", "Sciences", "All topics", "Fundamental" ], "source": "w" } ], "glosses": [ "The entropy of a quantum state. If the state is expressed as a quantum density matrix ρ, then this entropy can be expressed mathematically as S=-tr(ρ log ρ) where tr is the trace operator and the logarithm is natural." ], "id": "en-von_Neumann_entropy-en-noun-B6gai3V8", "links": [ [ "quantum mechanics", "quantum mechanics" ], [ "entropy", "entropy" ], [ "quantum state", "quantum state" ], [ "density matrix", "density matrix" ], [ "trace", "trace" ], [ "logarithm", "logarithm" ], [ "natural", "natural logarithm" ] ], "qualifier": "quantum mechanics", "raw_glosses": [ "(quantum mechanics) The entropy of a quantum state. If the state is expressed as a quantum density matrix ρ, then this entropy can be expressed mathematically as S=-tr(ρ log ρ) where tr is the trace operator and the logarithm is natural." ], "wikipedia": [ "John von Neumann", "density matrix#Entropy", "quantum entanglement#Entropy", "quantum information" ] } ], "sounds": [ { "ipa": "/vɔn ˈnoɪ.mən ˈɛn.tɹə.pi/" } ], "word": "von Neumann entropy" }
{ "etymology_text": "Named after John von Neumann.", "head_templates": [ { "args": { "1": "?", "head": "von Neumann entropy" }, "expansion": "von Neumann entropy", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ "English countable nouns", "English entries with incorrect language header", "English eponyms", "English lemmas", "English multiword terms", "English nouns", "English nouns with unknown or uncertain plurals", "Pages with 1 entry", "Pages with entries", "en:Quantum mechanics" ], "glosses": [ "The entropy of a quantum state. If the state is expressed as a quantum density matrix ρ, then this entropy can be expressed mathematically as S=-tr(ρ log ρ) where tr is the trace operator and the logarithm is natural." ], "links": [ [ "quantum mechanics", "quantum mechanics" ], [ "entropy", "entropy" ], [ "quantum state", "quantum state" ], [ "density matrix", "density matrix" ], [ "trace", "trace" ], [ "logarithm", "logarithm" ], [ "natural", "natural logarithm" ] ], "qualifier": "quantum mechanics", "raw_glosses": [ "(quantum mechanics) The entropy of a quantum state. If the state is expressed as a quantum density matrix ρ, then this entropy can be expressed mathematically as S=-tr(ρ log ρ) where tr is the trace operator and the logarithm is natural." ], "wikipedia": [ "John von Neumann", "density matrix#Entropy", "quantum entanglement#Entropy", "quantum information" ] } ], "sounds": [ { "ipa": "/vɔn ˈnoɪ.mən ˈɛn.tɹə.pi/" } ], "word": "von Neumann entropy" }
Download raw JSONL data for von Neumann entropy meaning in All languages combined (1.5kB)
This page is a part of the kaikki.org machine-readable All languages combined dictionary. This dictionary is based on structured data extracted on 2024-12-21 from the enwiktionary dump dated 2024-12-04 using wiktextract (d8cb2f3 and 4e554ae). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.