See tetrix on Wiktionary
{ "head_templates": [ { "args": { "1": "?" }, "expansion": "tetrix", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ { "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w" }, { "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with entries", "parents": [], "source": "w" }, { "kind": "other", "langcode": "en", "name": "Fractals", "orig": "en:Fractals", "parents": [], "source": "w" }, { "kind": "topical", "langcode": "en", "name": "Mathematics", "orig": "en:Mathematics", "parents": [ "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" } ], "examples": [ { "ref": "2007, Bruce M. Landman, Melvyn B. Nathanson, Jaroslav Nesetril, Combinatorial Number Theory: Proceedings of the 'Integers Conference 2005' in Celebration of the 70th Birthday of Ronald Graham, Carrollton, Georgia, USA, October 27-30, 2005, page 213:", "text": "Sierpiński's triangle (itself a two-dimensional analogue of the Cantor Set) has been generalized to the tetrix (Fig. 5), pyramid (Fig. 6), carpet (Fig. 7), and sponge (Fig. 8) […]", "type": "quote" } ], "glosses": [ "The three-dimensional analog of the Sierpinski triangle." ], "id": "en-tetrix-en-noun-lN-GZhab", "links": [ [ "mathematics", "mathematics" ], [ "three-dimensional", "three-dimensional" ], [ "analog", "analog" ], [ "Sierpinski triangle", "Sierpinski triangle" ] ], "raw_glosses": [ "(mathematics) The three-dimensional analog of the Sierpinski triangle." ], "topics": [ "mathematics", "sciences" ] } ], "word": "tetrix" }
{ "head_templates": [ { "args": { "1": "?" }, "expansion": "tetrix", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ "English countable nouns", "English entries with incorrect language header", "English lemmas", "English nouns", "English nouns with unknown or uncertain plurals", "English terms with quotations", "Pages with 1 entry", "Pages with entries", "Quotation templates to be cleaned", "en:Fractals", "en:Mathematics" ], "examples": [ { "ref": "2007, Bruce M. Landman, Melvyn B. Nathanson, Jaroslav Nesetril, Combinatorial Number Theory: Proceedings of the 'Integers Conference 2005' in Celebration of the 70th Birthday of Ronald Graham, Carrollton, Georgia, USA, October 27-30, 2005, page 213:", "text": "Sierpiński's triangle (itself a two-dimensional analogue of the Cantor Set) has been generalized to the tetrix (Fig. 5), pyramid (Fig. 6), carpet (Fig. 7), and sponge (Fig. 8) […]", "type": "quote" } ], "glosses": [ "The three-dimensional analog of the Sierpinski triangle." ], "links": [ [ "mathematics", "mathematics" ], [ "three-dimensional", "three-dimensional" ], [ "analog", "analog" ], [ "Sierpinski triangle", "Sierpinski triangle" ] ], "raw_glosses": [ "(mathematics) The three-dimensional analog of the Sierpinski triangle." ], "topics": [ "mathematics", "sciences" ] } ], "word": "tetrix" }
Download raw JSONL data for tetrix meaning in All languages combined (1.3kB)
This page is a part of the kaikki.org machine-readable All languages combined dictionary. This dictionary is based on structured data extracted on 2024-12-03 from the enwiktionary dump dated 2024-11-21 using wiktextract (94ba7e1 and 5dea2a6). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.