See tensor product on Wiktionary
{ "forms": [ { "form": "tensor products", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "tensor product (plural tensor products)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ { "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w" }, { "kind": "other", "name": "Entries with translation boxes", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with entries", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with Estonian translations", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with Finnish translations", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with French translations", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with German translations", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with Japanese translations", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with Romanian translations", "parents": [], "source": "w" }, { "kind": "topical", "langcode": "en", "name": "Mathematics", "orig": "en:Mathematics", "parents": [ "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" } ], "examples": [ { "ref": "2004, David S. Dummit with Richard M. Foote, chapter 11, in Abstract Algebra, →OCLC, page 421", "text": "Linear Transformations on Tensor Products of Vector Spaces\n…\nProposition 16. Let V and W be finite dimensional vector spaces over the field F with bases v_1,...,v_n and w_1,...,w_m respectively. Then V⊗_FW is a vector space over F of dimension nm with basis v_i⊗w_j, 1<i<n and 1<j<m.", "type": "quotation" }, { "ref": "2012, 27:30 from the start, in Lecture 1 . Hopf Algebras and Combinatorics (Federico Ardila), spoken by Federico Ardila (Federico Ardila), Federico Ardila, via YouTube", "text": "[The tensor product] U⊗V is the span of u⊗v:u∈U,v∈V\nmodulo the relations\n·u⊗(v+v')=u⊗v+u⊗v'\\·(u+u')⊗v=u⊗v+u'⊗v\\·(λu)⊗v=λ(u⊗v)=u⊗(λv)", "type": "quotation" } ], "glosses": [ "The most general bilinear operation in various contexts (as with vectors, matrices, tensors, vector spaces, algebras, topological vector spaces, modules, and so on), denoted by ⊗." ], "holonyms": [ { "word": "monoidal category" } ], "hyponyms": [ { "word": "Kronecker product" }, { "word": "exterior product" }, { "word": "wedge product" } ], "id": "en-tensor_product-en-noun-ceYOrAVT", "links": [ [ "mathematics", "mathematics" ], [ "bilinear", "bilinear" ], [ "operation", "operation" ], [ "vector", "vector" ], [ "matrices", "matrix" ], [ "tensor", "tensor" ], [ "vector space", "vector space" ], [ "algebra", "algebra" ], [ "topological", "topological" ], [ "module", "module" ], [ "⊗", "⊗" ] ], "meronyms": [ { "english": "if the tensor product is between algebraic structures", "word": "tensor" } ], "raw_glosses": [ "(mathematics) The most general bilinear operation in various contexts (as with vectors, matrices, tensors, vector spaces, algebras, topological vector spaces, modules, and so on), denoted by ⊗." ], "topics": [ "mathematics", "sciences" ], "translations": [ { "code": "et", "lang": "Estonian", "sense": "bilinear operation", "word": "tensorkorrutis" }, { "code": "fi", "lang": "Finnish", "sense": "bilinear operation", "word": "tensoritulo" }, { "code": "fr", "lang": "French", "sense": "bilinear operation", "tags": [ "masculine" ], "word": "produit tensoriel" }, { "code": "de", "lang": "German", "sense": "bilinear operation", "tags": [ "neuter" ], "word": "Tensorprodukt" }, { "code": "ja", "lang": "Japanese", "roman": "tensoru-seki", "sense": "bilinear operation", "word": "テンソル積" }, { "code": "ro", "lang": "Romanian", "sense": "bilinear operation", "tags": [ "neuter" ], "word": "produs tensorial" } ], "wikipedia": [ "tensor product" ] } ], "word": "tensor product" }
{ "forms": [ { "form": "tensor products", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "tensor product (plural tensor products)", "name": "en-noun" } ], "holonyms": [ { "word": "monoidal category" } ], "hyponyms": [ { "word": "Kronecker product" }, { "word": "exterior product" }, { "word": "wedge product" } ], "lang": "English", "lang_code": "en", "meronyms": [ { "english": "if the tensor product is between algebraic structures", "word": "tensor" } ], "pos": "noun", "senses": [ { "categories": [ "English countable nouns", "English entries with incorrect language header", "English lemmas", "English multiword terms", "English nouns", "Entries with translation boxes", "Pages with 1 entry", "Pages with entries", "Terms with Estonian translations", "Terms with Finnish translations", "Terms with French translations", "Terms with German translations", "Terms with Japanese translations", "Terms with Romanian translations", "en:Mathematics" ], "examples": [ { "ref": "2004, David S. Dummit with Richard M. Foote, chapter 11, in Abstract Algebra, →OCLC, page 421", "text": "Linear Transformations on Tensor Products of Vector Spaces\n…\nProposition 16. Let V and W be finite dimensional vector spaces over the field F with bases v_1,...,v_n and w_1,...,w_m respectively. Then V⊗_FW is a vector space over F of dimension nm with basis v_i⊗w_j, 1<i<n and 1<j<m.", "type": "quotation" }, { "ref": "2012, 27:30 from the start, in Lecture 1 . Hopf Algebras and Combinatorics (Federico Ardila), spoken by Federico Ardila (Federico Ardila), Federico Ardila, via YouTube", "text": "[The tensor product] U⊗V is the span of u⊗v:u∈U,v∈V\nmodulo the relations\n·u⊗(v+v')=u⊗v+u⊗v'\\·(u+u')⊗v=u⊗v+u'⊗v\\·(λu)⊗v=λ(u⊗v)=u⊗(λv)", "type": "quotation" } ], "glosses": [ "The most general bilinear operation in various contexts (as with vectors, matrices, tensors, vector spaces, algebras, topological vector spaces, modules, and so on), denoted by ⊗." ], "links": [ [ "mathematics", "mathematics" ], [ "bilinear", "bilinear" ], [ "operation", "operation" ], [ "vector", "vector" ], [ "matrices", "matrix" ], [ "tensor", "tensor" ], [ "vector space", "vector space" ], [ "algebra", "algebra" ], [ "topological", "topological" ], [ "module", "module" ], [ "⊗", "⊗" ] ], "raw_glosses": [ "(mathematics) The most general bilinear operation in various contexts (as with vectors, matrices, tensors, vector spaces, algebras, topological vector spaces, modules, and so on), denoted by ⊗." ], "topics": [ "mathematics", "sciences" ], "wikipedia": [ "tensor product" ] } ], "translations": [ { "code": "et", "lang": "Estonian", "sense": "bilinear operation", "word": "tensorkorrutis" }, { "code": "fi", "lang": "Finnish", "sense": "bilinear operation", "word": "tensoritulo" }, { "code": "fr", "lang": "French", "sense": "bilinear operation", "tags": [ "masculine" ], "word": "produit tensoriel" }, { "code": "de", "lang": "German", "sense": "bilinear operation", "tags": [ "neuter" ], "word": "Tensorprodukt" }, { "code": "ja", "lang": "Japanese", "roman": "tensoru-seki", "sense": "bilinear operation", "word": "テンソル積" }, { "code": "ro", "lang": "Romanian", "sense": "bilinear operation", "tags": [ "neuter" ], "word": "produs tensorial" } ], "word": "tensor product" }
Download raw JSONL data for tensor product meaning in All languages combined (3.2kB)
This page is a part of the kaikki.org machine-readable All languages combined dictionary. This dictionary is based on structured data extracted on 2024-12-01 from the enwiktionary dump dated 2024-11-21 using wiktextract (95d2be1 and 64224ec). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.