See supramenable on Wiktionary
{ "etymology_templates": [ { "args": { "1": "en", "2": "supra", "3": "amenable" }, "expansion": "supra- + amenable", "name": "prefix" } ], "etymology_text": "From supra- + amenable.", "head_templates": [ { "args": { "1": "-" }, "expansion": "supramenable (not comparable)", "name": "en-adj" } ], "lang": "English", "lang_code": "en", "pos": "adj", "senses": [ { "categories": [ { "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w" }, { "kind": "other", "name": "English terms prefixed with supra-", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with entries", "parents": [], "source": "w" }, { "kind": "topical", "langcode": "en", "name": "Mathematics", "orig": "en:Mathematics", "parents": [ "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" } ], "examples": [ { "ref": "2016, Dan-Virgil Voiculescu, “A remark about supramenability and the Macaev norm”, in arXiv:", "text": "We show that a finitely generated group G which satisfies a certain condition with respect to the Macaev norm is supramenable.", "type": "quote" } ], "glosses": [ "Having the property that any nonempty subset has a finitely additive left-invariant measure that maps that subset to 1." ], "id": "en-supramenable-en-adj-C~1jvh5a", "links": [ [ "mathematics", "mathematics" ] ], "raw_glosses": [ "(mathematics) Having the property that any nonempty subset has a finitely additive left-invariant measure that maps that subset to 1." ], "related": [ { "word": "supramenability" } ], "tags": [ "not-comparable" ], "topics": [ "mathematics", "sciences" ] } ], "word": "supramenable" }
{ "etymology_templates": [ { "args": { "1": "en", "2": "supra", "3": "amenable" }, "expansion": "supra- + amenable", "name": "prefix" } ], "etymology_text": "From supra- + amenable.", "head_templates": [ { "args": { "1": "-" }, "expansion": "supramenable (not comparable)", "name": "en-adj" } ], "lang": "English", "lang_code": "en", "pos": "adj", "related": [ { "word": "supramenability" } ], "senses": [ { "categories": [ "English adjectives", "English entries with incorrect language header", "English lemmas", "English terms prefixed with supra-", "English terms with quotations", "English uncomparable adjectives", "Pages with 1 entry", "Pages with entries", "en:Mathematics" ], "examples": [ { "ref": "2016, Dan-Virgil Voiculescu, “A remark about supramenability and the Macaev norm”, in arXiv:", "text": "We show that a finitely generated group G which satisfies a certain condition with respect to the Macaev norm is supramenable.", "type": "quote" } ], "glosses": [ "Having the property that any nonempty subset has a finitely additive left-invariant measure that maps that subset to 1." ], "links": [ [ "mathematics", "mathematics" ] ], "raw_glosses": [ "(mathematics) Having the property that any nonempty subset has a finitely additive left-invariant measure that maps that subset to 1." ], "tags": [ "not-comparable" ], "topics": [ "mathematics", "sciences" ] } ], "word": "supramenable" }
Download raw JSONL data for supramenable meaning in All languages combined (1.3kB)
This page is a part of the kaikki.org machine-readable All languages combined dictionary. This dictionary is based on structured data extracted on 2025-01-08 from the enwiktionary dump dated 2025-01-01 using wiktextract (9a96ef4 and 4ed51a5). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.