See posynomial on Wiktionary
{ "etymology_templates": [ { "args": { "1": "en", "2": "positive", "3": "polynomial" }, "expansion": "Blend of positive + polynomial", "name": "blend" } ], "etymology_text": "Blend of positive + polynomial", "forms": [ { "form": "posynomials", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "posynomial (plural posynomials)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ { "kind": "other", "name": "English blends", "parents": [], "source": "w" }, { "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w" }, { "kind": "other", "name": "English terms prefixed with posi-", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with entries", "parents": [], "source": "w" }, { "kind": "topical", "langcode": "en", "name": "Mathematics", "orig": "en:Mathematics", "parents": [ "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" } ], "glosses": [ "A function of the form f(x_1,x_2,…,x_n)=∑ₖ₌₁ᴷc_kx_1^(a_1k)⋯x_n^(a_nk), where all the coordinates x_i and coefficients c_k are positive real numbers, and the exponents a_ik are real numbers." ], "id": "en-posynomial-en-noun-1LvTDXcj", "links": [ [ "mathematics", "mathematics" ], [ "function", "function#English" ], [ "real numbers", "real number#English" ] ], "raw_glosses": [ "(mathematics) A function of the form f(x_1,x_2,…,x_n)=∑ₖ₌₁ᴷc_kx_1^(a_1k)⋯x_n^(a_nk), where all the coordinates x_i and coefficients c_k are positive real numbers, and the exponents a_ik are real numbers." ], "synonyms": [ { "word": "posinomial" } ], "topics": [ "mathematics", "sciences" ] } ], "word": "posynomial" }
{ "etymology_templates": [ { "args": { "1": "en", "2": "positive", "3": "polynomial" }, "expansion": "Blend of positive + polynomial", "name": "blend" } ], "etymology_text": "Blend of positive + polynomial", "forms": [ { "form": "posynomials", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "posynomial (plural posynomials)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ "English blends", "English countable nouns", "English entries with incorrect language header", "English lemmas", "English nouns", "English terms prefixed with posi-", "Pages with 1 entry", "Pages with entries", "en:Mathematics" ], "glosses": [ "A function of the form f(x_1,x_2,…,x_n)=∑ₖ₌₁ᴷc_kx_1^(a_1k)⋯x_n^(a_nk), where all the coordinates x_i and coefficients c_k are positive real numbers, and the exponents a_ik are real numbers." ], "links": [ [ "mathematics", "mathematics" ], [ "function", "function#English" ], [ "real numbers", "real number#English" ] ], "raw_glosses": [ "(mathematics) A function of the form f(x_1,x_2,…,x_n)=∑ₖ₌₁ᴷc_kx_1^(a_1k)⋯x_n^(a_nk), where all the coordinates x_i and coefficients c_k are positive real numbers, and the exponents a_ik are real numbers." ], "topics": [ "mathematics", "sciences" ] } ], "synonyms": [ { "word": "posinomial" } ], "word": "posynomial" }
Download raw JSONL data for posynomial meaning in All languages combined (1.3kB)
This page is a part of the kaikki.org machine-readable All languages combined dictionary. This dictionary is based on structured data extracted on 2025-01-18 from the enwiktionary dump dated 2025-01-01 using wiktextract (e4a2c88 and 4230888). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.