"nonvanishing" meaning in All languages combined

See nonvanishing on Wiktionary

Adjective [English]

Etymology: From non- + vanishing. Etymology templates: {{prefix|en|non|vanishing}} non- + vanishing Head templates: {{en-adj|-}} nonvanishing (not comparable)
  1. (mathematics) Of an expression, especially a function, being nonzero at a value, everywhere on a specified set, or on the entire domain. Tags: error-lua-exec, not-comparable Categories (topical): Mathematics
{
  "etymology_templates": [
    {
      "args": {
        "1": "en",
        "2": "non",
        "3": "vanishing"
      },
      "expansion": "non- + vanishing",
      "name": "prefix"
    }
  ],
  "etymology_text": "From non- + vanishing.",
  "head_templates": [
    {
      "args": {
        "1": "-"
      },
      "expansion": "nonvanishing (not comparable)",
      "name": "en-adj"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "adj",
  "senses": [
    {
      "categories": [
        {
          "kind": "other",
          "name": "English entries with incorrect language header",
          "parents": [
            "Entries with incorrect language header",
            "Entry maintenance"
          ],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "English terms prefixed with non-",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with 1 entry",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with entries",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "topical",
          "langcode": "en",
          "name": "Mathematics",
          "orig": "en:Mathematics",
          "parents": [
            "Formal sciences",
            "Sciences",
            "All topics",
            "Fundamental"
          ],
          "source": "w"
        }
      ],
      "examples": [
        {
          "ref": "2001 January 1, A. A. Coley, Bäcklund and Darboux Transformations: The Geometry of Solitons : AARMS-CRM Workshop, June 4-9, 1999, Halifax, N.S., Canada (CRM proceedings & lecture notes), American Mathematical Soc., →ISBN, page 153:",
          "text": "For each nonvanishing function h, which is a solution of (2.1), we consider #92;Omega as above and we define\n#92;Omega#95;i#61;d#92;Omega(e#95;i),#92;#59;#92;#59;#92;#59;W#61;#92;frac#123;#92;Omega#125;#123;h#125;",
          "type": "quote"
        },
        {
          "ref": "2013 November 11, C. Herbert Clemens, A Scrapbook of Complex Curve Theory (University Series in Mathematics), Springer Science & Business Media, →ISBN, →OCLC, page 61:",
          "text": "This means that the vector space of solutions of (2.25) near #92;lambda#61;0 is generated by\n#92;sigma#95;1(#92;lambda) holomorphic and nonvanishing at 0,\n#92;left(#92;lambda#92;sigma#95;2(#92;lambda)#43;(log#92;lambda)#92;sigma#95;1(#92;lambda)#92;right) where a #92;sigma#95;2 is holomorphic and nonvanishing at 0.",
          "type": "quote"
        },
        {
          "type": "example"
        }
      ],
      "glosses": [
        "Of an expression, especially a function, being nonzero at a value, everywhere on a specified set, or on the entire domain."
      ],
      "id": "en-nonvanishing-en-adj-VSM1KRUW",
      "links": [
        [
          "mathematics",
          "mathematics"
        ],
        [
          "expression",
          "expression"
        ],
        [
          "function",
          "function"
        ],
        [
          "nonzero",
          "nonzero"
        ],
        [
          "set",
          "set"
        ],
        [
          "domain",
          "domain"
        ]
      ],
      "raw_glosses": [
        "(mathematics) Of an expression, especially a function, being nonzero at a value, everywhere on a specified set, or on the entire domain."
      ],
      "tags": [
        "error-lua-exec",
        "not-comparable"
      ],
      "topics": [
        "mathematics",
        "sciences"
      ]
    }
  ],
  "word": "nonvanishing"
}
{
  "etymology_templates": [
    {
      "args": {
        "1": "en",
        "2": "non",
        "3": "vanishing"
      },
      "expansion": "non- + vanishing",
      "name": "prefix"
    }
  ],
  "etymology_text": "From non- + vanishing.",
  "head_templates": [
    {
      "args": {
        "1": "-"
      },
      "expansion": "nonvanishing (not comparable)",
      "name": "en-adj"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "adj",
  "senses": [
    {
      "categories": [
        "English adjectives",
        "English entries with incorrect language header",
        "English lemmas",
        "English terms prefixed with non-",
        "English terms with quotations",
        "English uncomparable adjectives",
        "Pages with 1 entry",
        "Pages with entries",
        "en:Mathematics"
      ],
      "examples": [
        {
          "ref": "2001 January 1, A. A. Coley, Bäcklund and Darboux Transformations: The Geometry of Solitons : AARMS-CRM Workshop, June 4-9, 1999, Halifax, N.S., Canada (CRM proceedings & lecture notes), American Mathematical Soc., →ISBN, page 153:",
          "text": "For each nonvanishing function h, which is a solution of (2.1), we consider #92;Omega as above and we define\n#92;Omega#95;i#61;d#92;Omega(e#95;i),#92;#59;#92;#59;#92;#59;W#61;#92;frac#123;#92;Omega#125;#123;h#125;",
          "type": "quote"
        },
        {
          "ref": "2013 November 11, C. Herbert Clemens, A Scrapbook of Complex Curve Theory (University Series in Mathematics), Springer Science & Business Media, →ISBN, →OCLC, page 61:",
          "text": "This means that the vector space of solutions of (2.25) near #92;lambda#61;0 is generated by\n#92;sigma#95;1(#92;lambda) holomorphic and nonvanishing at 0,\n#92;left(#92;lambda#92;sigma#95;2(#92;lambda)#43;(log#92;lambda)#92;sigma#95;1(#92;lambda)#92;right) where a #92;sigma#95;2 is holomorphic and nonvanishing at 0.",
          "type": "quote"
        },
        {
          "type": "example"
        }
      ],
      "glosses": [
        "Of an expression, especially a function, being nonzero at a value, everywhere on a specified set, or on the entire domain."
      ],
      "links": [
        [
          "mathematics",
          "mathematics"
        ],
        [
          "expression",
          "expression"
        ],
        [
          "function",
          "function"
        ],
        [
          "nonzero",
          "nonzero"
        ],
        [
          "set",
          "set"
        ],
        [
          "domain",
          "domain"
        ]
      ],
      "raw_glosses": [
        "(mathematics) Of an expression, especially a function, being nonzero at a value, everywhere on a specified set, or on the entire domain."
      ],
      "tags": [
        "error-lua-exec",
        "not-comparable"
      ],
      "topics": [
        "mathematics",
        "sciences"
      ]
    }
  ],
  "word": "nonvanishing"
}

Download raw JSONL data for nonvanishing meaning in All languages combined (2.2kB)

{
  "called_from": "luaexec/683",
  "msg": "LUA error in #invoke('quote', 'quote_t', 'type=book') parent ('Template:quote-book', {1: 'en\\n', 'url': 'https://books.google.ch/books?id=Kro6DwAAQBAJ&lpg=PA205&dq=%22nonvanishing%20for%22&pg=PA205#v=onepage&q=%22nonvanishing%20for%22&f=false', 'title': 'Representation Theory, Number Theory, and Invariant Theory: In Honor of Roger Howe on the Occasion of His 70th Birthday', 'author': 'Jim Cogdell; Ju-Lee Kim; Chen-Bo Zhu', 'publisher': 'Birkhäuser', 'series': 'Progress in Mathematics', 'isbn': '9783319597287', 'oclc': '1007699203', 'date': '2017-10-19', 'page': '205', 'passage': \"Lemma 2 <i>Let <math>F(T)</math> be a nonzero element of the fraction field of <math>\\\\mathbb{Z}_p[[T]]</math> for which <math>F(\\\\zeta - 1)</math> is well defined and '''nonvanishing''' for all <math>\\\\zeta \\\\in \\\\mathcal{Z}</math>. Then <math>\\\\{\", 2: 'F(\\\\zeta - 1)', 3: ' \\\\mid \\\\zeta \\\\in \\\\mathcal{Z}\\\\}</math> is bounded above and below.</i>\\n'})",
  "path": [
    "nonvanishing",
    "Template:quote-book",
    "#invoke",
    "#invoke"
  ],
  "section": "English",
  "subsection": "adjective",
  "title": "nonvanishing",
  "trace": "[string \"Module:quote\"]:2583: |3= is an alias of |author=; cannot specify a value for both"
}

{
  "called_from": "luaexec/683",
  "msg": "LUA error in #invoke('quote', 'quote_t', 'type=book') parent ('Template:quote-book', {1: 'en\\n', 'url': 'https://books.google.ch/books?id=Kro6DwAAQBAJ&lpg=PA205&dq=%22nonvanishing%20for%22&pg=PA205#v=onepage&q=%22nonvanishing%20for%22&f=false', 'title': 'Representation Theory, Number Theory, and Invariant Theory: In Honor of Roger Howe on the Occasion of His 70th Birthday', 'author': 'Jim Cogdell; Ju-Lee Kim; Chen-Bo Zhu', 'publisher': 'Birkhäuser', 'series': 'Progress in Mathematics', 'isbn': '9783319597287', 'oclc': '1007699203', 'date': '2017-10-19', 'page': '205', 'passage': \"Lemma 2 <i>Let <math>F(T)</math> be a nonzero element of the fraction field of <math>\\\\mathbb{Z}_p[[T]]</math> for which <math>F(\\\\zeta - 1)</math> is well defined and '''nonvanishing''' for all <math>\\\\zeta \\\\in \\\\mathcal{Z}</math>. Then <math>\\\\{\", 2: 'F(\\\\zeta - 1)', 3: ' \\\\mid \\\\zeta \\\\in \\\\mathcal{Z}\\\\}</math> is bounded above and below.</i>\\n'})",
  "path": [
    "nonvanishing",
    "Template:quote-book",
    "#invoke",
    "#invoke"
  ],
  "section": "English",
  "subsection": "adjective",
  "title": "nonvanishing",
  "trace": "[string \"Module:quote\"]:2583: |3= is an alias of |author=; cannot specify a value for both"
}

This page is a part of the kaikki.org machine-readable All languages combined dictionary. This dictionary is based on structured data extracted on 2025-02-03 from the enwiktionary dump dated 2025-01-20 using wiktextract (05fdf6b and 9dbd323). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.

If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.