See integral domain on Wiktionary
{ "forms": [ { "form": "integral domains", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "integral domain (plural integral domains)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ { "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w" }, { "kind": "other", "name": "Entries with translation boxes", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with entries", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with Finnish translations", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with French translations", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with Italian translations", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with Serbo-Croatian translations", "parents": [], "source": "w" }, { "kind": "other", "name": "Terms with Spanish translations", "parents": [], "source": "w" }, { "kind": "topical", "langcode": "en", "name": "Algebra", "orig": "en:Algebra", "parents": [ "Mathematics", "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" } ], "examples": [ { "text": "A ring R is an integral domain if and only if the polynomial ring R#x5B;x#x5D; is an integral domain.", "type": "example" }, { "text": "For any integral domain there can be derived an associated field of fractions.", "type": "example" }, { "ref": "1990, Barbara H. Partee, Alice ter Meulen, Robert E. Wall, Mathematical Methods in Linguistics, Kluwer Academic Publishers, page 266:", "text": "For integral domains, we will use a⁻¹ to designate the multiplicative inverse of a (if it has one; since not all elements need have inverses, this notation can be used only where it can be shown that an inverse exists).", "type": "quote" }, { "ref": "2013, Marco Fontana, Evan Houston, Thomas Lucas, Factoring Ideals in Integral Domains, Springer, page 95:", "text": "An integral domain is said to have strong pseudo-Dedekind factorization if each proper ideal can be factored as the product of an invertible ideal (possibly equal to the ring) and a finite product of pairwise comaximal prime ideals with at least one prime in the product.", "type": "quote" }, { "ref": "2017, Ken Levasseur, Al Doerr, Applied Discrete Structures: Part 2 - Applied Algebra, Lulu.com, page 171:", "text": "#x5B;#x5C;mathbb#x7B;Z#x7D;#x3B;#x2B;,#x5C;cdot#x5D;, #x5B;#x5C;mathbb#x7B;Z#x7D;#x5F;p,#x2B;#x5F;p,#x5C;times#x5F;p#x5D; with p a prime, #x5B;#x5C;mathbb#x7B;Q#x7D;#x3B;#x2B;,#x5C;cdot#x5D;, #x5B;#x5C;mathbb#x7B;R#x7D;#x3B;#x2B;,#x5C;cdot#x5D;, and #x5B;#x5C;mathbb#x7B;C#x7D;#x3B;#x2B;,#x5C;cdot#x5D; are all integral domains. The key example of an infinite integral domain is #x5B;#x5C;mathbb#x7B;Z#x7D;#x3B;#x2B;,#x5C;cdot#x5D;. In fact, it is from #x5C;mathbb#x7B;Z#x7D; that the term integral domain is derived. Our main example of a finite integral domain is #x5B;#x5C;mathbb#x7B;Z#x7D;#x5F;p,#x2B;#x5F;p,#x5C;times#x5F;p#x5D;, when p is prime.", "type": "quote" } ], "glosses": [ "Any nonzero commutative ring in which the product of nonzero elements is nonzero." ], "holonyms": [ { "word": "field of fractions" } ], "hypernyms": [ { "word": "commutative ring" }, { "word": "domain" } ], "hyponyms": [ { "sense": "Euclidean domain", "word": "field" } ], "id": "en-integral_domain-en-noun-OL98CWCr", "links": [ [ "algebra", "algebra" ], [ "commutative ring", "commutative ring" ] ], "qualifier": "ring theory", "raw_glosses": [ "(algebra, ring theory) Any nonzero commutative ring in which the product of nonzero elements is nonzero." ], "synonyms": [ { "sense": "commutative ring in which the product of nonzero elements is nonzero", "word": "entire ring" } ], "topics": [ "algebra", "mathematics", "sciences" ], "translations": [ { "code": "fi", "lang": "Finnish", "sense": "nonzero commutative ring in which the product of nonzero elements is nonzero", "word": "kokonaisalue" }, { "code": "fr", "lang": "French", "sense": "nonzero commutative ring in which the product of nonzero elements is nonzero", "tags": [ "masculine" ], "word": "anneau d’intégrité" }, { "code": "it", "lang": "Italian", "sense": "nonzero commutative ring in which the product of nonzero elements is nonzero", "tags": [ "masculine" ], "word": "dominio d'integrità" }, { "code": "sh", "lang": "Serbo-Croatian", "sense": "nonzero commutative ring in which the product of nonzero elements is nonzero", "tags": [ "Cyrillic" ], "word": "област цијелих" }, { "code": "sh", "lang": "Serbo-Croatian", "sense": "nonzero commutative ring in which the product of nonzero elements is nonzero", "tags": [ "Cyrillic" ], "word": "област целих" }, { "code": "sh", "lang": "Serbo-Croatian", "sense": "nonzero commutative ring in which the product of nonzero elements is nonzero", "tags": [ "Cyrillic" ], "word": "домен" }, { "code": "sh", "lang": "Serbo-Croatian", "sense": "nonzero commutative ring in which the product of nonzero elements is nonzero", "tags": [ "Latin" ], "word": "oblast cijelih" }, { "code": "sh", "lang": "Serbo-Croatian", "sense": "nonzero commutative ring in which the product of nonzero elements is nonzero", "tags": [ "Latin" ], "word": "oblast celih" }, { "code": "sh", "lang": "Serbo-Croatian", "sense": "nonzero commutative ring in which the product of nonzero elements is nonzero", "tags": [ "Latin" ], "word": "domen" }, { "code": "es", "lang": "Spanish", "sense": "nonzero commutative ring in which the product of nonzero elements is nonzero", "tags": [ "masculine" ], "word": "dominio de integridad" } ], "wikipedia": [ "integral domain" ] } ], "word": "integral domain" }
{ "forms": [ { "form": "integral domains", "tags": [ "plural" ] } ], "head_templates": [ { "args": {}, "expansion": "integral domain (plural integral domains)", "name": "en-noun" } ], "holonyms": [ { "word": "field of fractions" } ], "hypernyms": [ { "word": "commutative ring" }, { "word": "domain" } ], "hyponyms": [ { "sense": "Euclidean domain", "word": "field" } ], "lang": "English", "lang_code": "en", "pos": "noun", "senses": [ { "categories": [ "English countable nouns", "English entries with incorrect language header", "English lemmas", "English multiword terms", "English nouns", "English terms with quotations", "English terms with usage examples", "Entries with translation boxes", "Pages with 1 entry", "Pages with entries", "Terms with Finnish translations", "Terms with French translations", "Terms with Italian translations", "Terms with Serbo-Croatian translations", "Terms with Spanish translations", "en:Algebra" ], "examples": [ { "text": "A ring R is an integral domain if and only if the polynomial ring R#x5B;x#x5D; is an integral domain.", "type": "example" }, { "text": "For any integral domain there can be derived an associated field of fractions.", "type": "example" }, { "ref": "1990, Barbara H. Partee, Alice ter Meulen, Robert E. Wall, Mathematical Methods in Linguistics, Kluwer Academic Publishers, page 266:", "text": "For integral domains, we will use a⁻¹ to designate the multiplicative inverse of a (if it has one; since not all elements need have inverses, this notation can be used only where it can be shown that an inverse exists).", "type": "quote" }, { "ref": "2013, Marco Fontana, Evan Houston, Thomas Lucas, Factoring Ideals in Integral Domains, Springer, page 95:", "text": "An integral domain is said to have strong pseudo-Dedekind factorization if each proper ideal can be factored as the product of an invertible ideal (possibly equal to the ring) and a finite product of pairwise comaximal prime ideals with at least one prime in the product.", "type": "quote" }, { "ref": "2017, Ken Levasseur, Al Doerr, Applied Discrete Structures: Part 2 - Applied Algebra, Lulu.com, page 171:", "text": "#x5B;#x5C;mathbb#x7B;Z#x7D;#x3B;#x2B;,#x5C;cdot#x5D;, #x5B;#x5C;mathbb#x7B;Z#x7D;#x5F;p,#x2B;#x5F;p,#x5C;times#x5F;p#x5D; with p a prime, #x5B;#x5C;mathbb#x7B;Q#x7D;#x3B;#x2B;,#x5C;cdot#x5D;, #x5B;#x5C;mathbb#x7B;R#x7D;#x3B;#x2B;,#x5C;cdot#x5D;, and #x5B;#x5C;mathbb#x7B;C#x7D;#x3B;#x2B;,#x5C;cdot#x5D; are all integral domains. The key example of an infinite integral domain is #x5B;#x5C;mathbb#x7B;Z#x7D;#x3B;#x2B;,#x5C;cdot#x5D;. In fact, it is from #x5C;mathbb#x7B;Z#x7D; that the term integral domain is derived. Our main example of a finite integral domain is #x5B;#x5C;mathbb#x7B;Z#x7D;#x5F;p,#x2B;#x5F;p,#x5C;times#x5F;p#x5D;, when p is prime.", "type": "quote" } ], "glosses": [ "Any nonzero commutative ring in which the product of nonzero elements is nonzero." ], "links": [ [ "algebra", "algebra" ], [ "commutative ring", "commutative ring" ] ], "qualifier": "ring theory", "raw_glosses": [ "(algebra, ring theory) Any nonzero commutative ring in which the product of nonzero elements is nonzero." ], "topics": [ "algebra", "mathematics", "sciences" ], "wikipedia": [ "integral domain" ] } ], "synonyms": [ { "sense": "commutative ring in which the product of nonzero elements is nonzero", "word": "entire ring" } ], "translations": [ { "code": "fi", "lang": "Finnish", "sense": "nonzero commutative ring in which the product of nonzero elements is nonzero", "word": "kokonaisalue" }, { "code": "fr", "lang": "French", "sense": "nonzero commutative ring in which the product of nonzero elements is nonzero", "tags": [ "masculine" ], "word": "anneau d’intégrité" }, { "code": "it", "lang": "Italian", "sense": "nonzero commutative ring in which the product of nonzero elements is nonzero", "tags": [ "masculine" ], "word": "dominio d'integrità" }, { "code": "sh", "lang": "Serbo-Croatian", "sense": "nonzero commutative ring in which the product of nonzero elements is nonzero", "tags": [ "Cyrillic" ], "word": "област цијелих" }, { "code": "sh", "lang": "Serbo-Croatian", "sense": "nonzero commutative ring in which the product of nonzero elements is nonzero", "tags": [ "Cyrillic" ], "word": "област целих" }, { "code": "sh", "lang": "Serbo-Croatian", "sense": "nonzero commutative ring in which the product of nonzero elements is nonzero", "tags": [ "Cyrillic" ], "word": "домен" }, { "code": "sh", "lang": "Serbo-Croatian", "sense": "nonzero commutative ring in which the product of nonzero elements is nonzero", "tags": [ "Latin" ], "word": "oblast cijelih" }, { "code": "sh", "lang": "Serbo-Croatian", "sense": "nonzero commutative ring in which the product of nonzero elements is nonzero", "tags": [ "Latin" ], "word": "oblast celih" }, { "code": "sh", "lang": "Serbo-Croatian", "sense": "nonzero commutative ring in which the product of nonzero elements is nonzero", "tags": [ "Latin" ], "word": "domen" }, { "code": "es", "lang": "Spanish", "sense": "nonzero commutative ring in which the product of nonzero elements is nonzero", "tags": [ "masculine" ], "word": "dominio de integridad" } ], "word": "integral domain" }
Download raw JSONL data for integral domain meaning in All languages combined (5.0kB)
This page is a part of the kaikki.org machine-readable All languages combined dictionary. This dictionary is based on structured data extracted on 2024-11-06 from the enwiktionary dump dated 2024-10-02 using wiktextract (fbeafe8 and 7f03c9b). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.