"fundamental theorem of calculus for line integrals" meaning in All languages combined

See fundamental theorem of calculus for line integrals on Wiktionary

Proper name [English]

Forms: the fundamental theorem of calculus for line integrals [canonical]
Head templates: {{en-prop|def=1}} the fundamental theorem of calculus for line integrals
  1. (calculus) A generalization of the fundamental theorem of calculus to line integrals of vector fields, which states that the line integral of a conservative vector field along a path can be computed by evaluating the potential function at the endpoints of the path. Specifically, given a potential function f with continuous first partial derivatives on an open region R containing a curve C parameterized by mathbf r(t) for a≤t≤b: Translations (theorem): фундаментална теорема на криволинейните интеграли (fundamentalna teorema na krivolinejnite integrali) [feminine] (Bulgarian), théorème fondamental des intégrales curvilignes [masculine] (French), teorema fundamental para as integrais de linha [masculine] (Portuguese), teorema fundamental para integrales de línea [masculine] (Spanish), teorema fundamental de las integrales de línea [masculine] (Spanish)
{
  "forms": [
    {
      "form": "the fundamental theorem of calculus for line integrals",
      "tags": [
        "canonical"
      ]
    }
  ],
  "head_templates": [
    {
      "args": {
        "def": "1"
      },
      "expansion": "the fundamental theorem of calculus for line integrals",
      "name": "en-prop"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "name",
  "senses": [
    {
      "categories": [
        {
          "kind": "other",
          "name": "English entries with incorrect language header",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Entries with translation boxes",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with 1 entry",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with entries",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with Bulgarian translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with French translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with Portuguese translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with Spanish translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "langcode": "en",
          "name": "Calculus",
          "orig": "en:Calculus",
          "parents": [],
          "source": "w"
        }
      ],
      "examples": [
        {
          "text": "∫_C∇f·d mathbf r=f( mathbf r(b))-f( mathbf r(a))."
        }
      ],
      "glosses": [
        "A generalization of the fundamental theorem of calculus to line integrals of vector fields, which states that the line integral of a conservative vector field along a path can be computed by evaluating the potential function at the endpoints of the path. Specifically, given a potential function f with continuous first partial derivatives on an open region R containing a curve C parameterized by mathbf r(t) for a≤t≤b"
      ],
      "id": "en-fundamental_theorem_of_calculus_for_line_integrals-en-name-5xky~rwO",
      "links": [
        [
          "calculus",
          "calculus"
        ],
        [
          "fundamental theorem of calculus",
          "fundamental theorem of calculus"
        ],
        [
          "line integrals",
          "line integral"
        ],
        [
          "vector fields",
          "vector field"
        ],
        [
          "conservative",
          "conservative"
        ]
      ],
      "raw_glosses": [
        "(calculus) A generalization of the fundamental theorem of calculus to line integrals of vector fields, which states that the line integral of a conservative vector field along a path can be computed by evaluating the potential function at the endpoints of the path. Specifically, given a potential function f with continuous first partial derivatives on an open region R containing a curve C parameterized by mathbf r(t) for a≤t≤b:"
      ],
      "topics": [
        "calculus",
        "mathematics",
        "sciences"
      ],
      "translations": [
        {
          "code": "bg",
          "lang": "Bulgarian",
          "roman": "fundamentalna teorema na krivolinejnite integrali",
          "sense": "theorem",
          "tags": [
            "feminine"
          ],
          "word": "фундаментална теорема на криволинейните интеграли"
        },
        {
          "code": "fr",
          "lang": "French",
          "sense": "theorem",
          "tags": [
            "masculine"
          ],
          "word": "théorème fondamental des intégrales curvilignes"
        },
        {
          "code": "pt",
          "lang": "Portuguese",
          "sense": "theorem",
          "tags": [
            "masculine"
          ],
          "word": "teorema fundamental para as integrais de linha"
        },
        {
          "code": "es",
          "lang": "Spanish",
          "sense": "theorem",
          "tags": [
            "masculine"
          ],
          "word": "teorema fundamental para integrales de línea"
        },
        {
          "code": "es",
          "lang": "Spanish",
          "sense": "theorem",
          "tags": [
            "masculine"
          ],
          "word": "teorema fundamental de las integrales de línea"
        }
      ]
    }
  ],
  "word": "fundamental theorem of calculus for line integrals"
}
{
  "forms": [
    {
      "form": "the fundamental theorem of calculus for line integrals",
      "tags": [
        "canonical"
      ]
    }
  ],
  "head_templates": [
    {
      "args": {
        "def": "1"
      },
      "expansion": "the fundamental theorem of calculus for line integrals",
      "name": "en-prop"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "name",
  "senses": [
    {
      "categories": [
        "English entries with incorrect language header",
        "English lemmas",
        "English multiword terms",
        "English proper nouns",
        "English uncountable nouns",
        "Entries with translation boxes",
        "Pages with 1 entry",
        "Pages with entries",
        "Terms with Bulgarian translations",
        "Terms with French translations",
        "Terms with Portuguese translations",
        "Terms with Spanish translations",
        "en:Calculus"
      ],
      "examples": [
        {
          "text": "∫_C∇f·d mathbf r=f( mathbf r(b))-f( mathbf r(a))."
        }
      ],
      "glosses": [
        "A generalization of the fundamental theorem of calculus to line integrals of vector fields, which states that the line integral of a conservative vector field along a path can be computed by evaluating the potential function at the endpoints of the path. Specifically, given a potential function f with continuous first partial derivatives on an open region R containing a curve C parameterized by mathbf r(t) for a≤t≤b"
      ],
      "links": [
        [
          "calculus",
          "calculus"
        ],
        [
          "fundamental theorem of calculus",
          "fundamental theorem of calculus"
        ],
        [
          "line integrals",
          "line integral"
        ],
        [
          "vector fields",
          "vector field"
        ],
        [
          "conservative",
          "conservative"
        ]
      ],
      "raw_glosses": [
        "(calculus) A generalization of the fundamental theorem of calculus to line integrals of vector fields, which states that the line integral of a conservative vector field along a path can be computed by evaluating the potential function at the endpoints of the path. Specifically, given a potential function f with continuous first partial derivatives on an open region R containing a curve C parameterized by mathbf r(t) for a≤t≤b:"
      ],
      "topics": [
        "calculus",
        "mathematics",
        "sciences"
      ]
    }
  ],
  "translations": [
    {
      "code": "bg",
      "lang": "Bulgarian",
      "roman": "fundamentalna teorema na krivolinejnite integrali",
      "sense": "theorem",
      "tags": [
        "feminine"
      ],
      "word": "фундаментална теорема на криволинейните интеграли"
    },
    {
      "code": "fr",
      "lang": "French",
      "sense": "theorem",
      "tags": [
        "masculine"
      ],
      "word": "théorème fondamental des intégrales curvilignes"
    },
    {
      "code": "pt",
      "lang": "Portuguese",
      "sense": "theorem",
      "tags": [
        "masculine"
      ],
      "word": "teorema fundamental para as integrais de linha"
    },
    {
      "code": "es",
      "lang": "Spanish",
      "sense": "theorem",
      "tags": [
        "masculine"
      ],
      "word": "teorema fundamental para integrales de línea"
    },
    {
      "code": "es",
      "lang": "Spanish",
      "sense": "theorem",
      "tags": [
        "masculine"
      ],
      "word": "teorema fundamental de las integrales de línea"
    }
  ],
  "word": "fundamental theorem of calculus for line integrals"
}

Download raw JSONL data for fundamental theorem of calculus for line integrals meaning in All languages combined (2.8kB)


This page is a part of the kaikki.org machine-readable All languages combined dictionary. This dictionary is based on structured data extracted on 2025-07-20 from the enwiktionary dump dated 2025-07-01 using wiktextract (45c4a21 and f1c2b61). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.

If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.