"cyclic group" meaning in All languages combined

See cyclic group on Wiktionary

Noun [English]

Forms: cyclic groups [plural]
Head templates: {{en-noun}} cyclic group (plural cyclic groups)
  1. (group theory) A group generated by a single element. Wikipedia link: cyclic group Categories (topical): Group theory Synonyms: monogenous group Hypernyms: abelian group Related terms: cyclic module Translations (group generated by a single element): gruppo ciclico [masculine] (Italian)

Inflected forms

{
  "forms": [
    {
      "form": "cyclic groups",
      "tags": [
        "plural"
      ]
    }
  ],
  "head_templates": [
    {
      "args": {},
      "expansion": "cyclic group (plural cyclic groups)",
      "name": "en-noun"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "noun",
  "senses": [
    {
      "categories": [
        {
          "kind": "other",
          "name": "English entries with incorrect language header",
          "parents": [
            "Entries with incorrect language header",
            "Entry maintenance"
          ],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Entries with translation boxes",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with 1 entry",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Pages with entries",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "other",
          "name": "Terms with Italian translations",
          "parents": [],
          "source": "w"
        },
        {
          "kind": "topical",
          "langcode": "en",
          "name": "Group theory",
          "orig": "en:Group theory",
          "parents": [
            "Algebra",
            "Mathematics",
            "Formal sciences",
            "Sciences",
            "All topics",
            "Fundamental"
          ],
          "source": "w"
        }
      ],
      "examples": [
        {
          "text": "1986, N. S. Gopalakrishnan, University Algebra, New Age International, 2nd Edition, page 22,\nProposition 1.5.6. Any subgroup of an infinite cyclic group is also an infinite cyclic group."
        },
        {
          "ref": "2002, Serge Lang, Algebra, 3rd edition, Springer, page 24:",
          "text": "If u#58;G#95;1#92;rightarrow#92;mathbb#123;Z#125;#47;m#92;mathbb#123;Z#125; and v#58;G#95;2#92;rightarrow#92;mathbb#123;Z#125;#47;m#92;mathbb#123;Z#125; are isomorphisms of two cyclic groups with #92;mathbb#123;Z#125;#47;m#92;mathbb#123;Z#125;, then v#123;-1#125;#92;circu#58;G#95;1#92;rightarrowG#95;2 is an isomorphism.",
          "type": "quote"
        },
        {
          "text": "2003, Alexander Retakh (translator), Ėrnest Borisovich Vinberg, A Course in Algebra, [2001, Э. Б. Винберг, Курс алгебры, Factorial Press] American Mathematical Society, page 152,\nCyclic groups are the simplest groups imaginable."
        }
      ],
      "glosses": [
        "A group generated by a single element."
      ],
      "hypernyms": [
        {
          "word": "abelian group"
        }
      ],
      "id": "en-cyclic_group-en-noun-tmPwUUDY",
      "links": [
        [
          "group theory",
          "group theory"
        ],
        [
          "group",
          "group"
        ]
      ],
      "raw_glosses": [
        "(group theory) A group generated by a single element."
      ],
      "related": [
        {
          "word": "cyclic module"
        }
      ],
      "synonyms": [
        {
          "word": "monogenous group"
        }
      ],
      "topics": [
        "group-theory",
        "mathematics",
        "sciences"
      ],
      "translations": [
        {
          "code": "it",
          "lang": "Italian",
          "sense": "group generated by a single element",
          "tags": [
            "masculine"
          ],
          "word": "gruppo ciclico"
        }
      ],
      "wikipedia": [
        "cyclic group"
      ]
    }
  ],
  "word": "cyclic group"
}
{
  "forms": [
    {
      "form": "cyclic groups",
      "tags": [
        "plural"
      ]
    }
  ],
  "head_templates": [
    {
      "args": {},
      "expansion": "cyclic group (plural cyclic groups)",
      "name": "en-noun"
    }
  ],
  "hypernyms": [
    {
      "word": "abelian group"
    }
  ],
  "lang": "English",
  "lang_code": "en",
  "pos": "noun",
  "related": [
    {
      "word": "cyclic module"
    }
  ],
  "senses": [
    {
      "categories": [
        "English countable nouns",
        "English entries with incorrect language header",
        "English lemmas",
        "English multiword terms",
        "English nouns",
        "English terms with quotations",
        "Entries with translation boxes",
        "Pages with 1 entry",
        "Pages with entries",
        "Terms with Italian translations",
        "en:Group theory"
      ],
      "examples": [
        {
          "text": "1986, N. S. Gopalakrishnan, University Algebra, New Age International, 2nd Edition, page 22,\nProposition 1.5.6. Any subgroup of an infinite cyclic group is also an infinite cyclic group."
        },
        {
          "ref": "2002, Serge Lang, Algebra, 3rd edition, Springer, page 24:",
          "text": "If u#58;G#95;1#92;rightarrow#92;mathbb#123;Z#125;#47;m#92;mathbb#123;Z#125; and v#58;G#95;2#92;rightarrow#92;mathbb#123;Z#125;#47;m#92;mathbb#123;Z#125; are isomorphisms of two cyclic groups with #92;mathbb#123;Z#125;#47;m#92;mathbb#123;Z#125;, then v#123;-1#125;#92;circu#58;G#95;1#92;rightarrowG#95;2 is an isomorphism.",
          "type": "quote"
        },
        {
          "text": "2003, Alexander Retakh (translator), Ėrnest Borisovich Vinberg, A Course in Algebra, [2001, Э. Б. Винберг, Курс алгебры, Factorial Press] American Mathematical Society, page 152,\nCyclic groups are the simplest groups imaginable."
        }
      ],
      "glosses": [
        "A group generated by a single element."
      ],
      "links": [
        [
          "group theory",
          "group theory"
        ],
        [
          "group",
          "group"
        ]
      ],
      "raw_glosses": [
        "(group theory) A group generated by a single element."
      ],
      "synonyms": [
        {
          "word": "monogenous group"
        }
      ],
      "topics": [
        "group-theory",
        "mathematics",
        "sciences"
      ],
      "wikipedia": [
        "cyclic group"
      ]
    }
  ],
  "translations": [
    {
      "code": "it",
      "lang": "Italian",
      "sense": "group generated by a single element",
      "tags": [
        "masculine"
      ],
      "word": "gruppo ciclico"
    }
  ],
  "word": "cyclic group"
}

Download raw JSONL data for cyclic group meaning in All languages combined (2.0kB)


This page is a part of the kaikki.org machine-readable All languages combined dictionary. This dictionary is based on structured data extracted on 2025-01-13 from the enwiktionary dump dated 2025-01-01 using wiktextract (4ba5975 and 4ed51a5). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.

If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.