See catenoidal on Wiktionary
{ "etymology_templates": [ { "args": { "1": "en", "2": "catenoid", "3": "al" }, "expansion": "catenoid + -al", "name": "suffix" } ], "etymology_text": "From catenoid + -al.", "head_templates": [ { "args": { "1": "-" }, "expansion": "catenoidal (not comparable)", "name": "en-adj" } ], "lang": "English", "lang_code": "en", "pos": "adj", "senses": [ { "categories": [ { "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w" }, { "kind": "other", "name": "English terms suffixed with -al", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with entries", "parents": [], "source": "w" }, { "kind": "topical", "langcode": "en", "name": "Mathematics", "orig": "en:Mathematics", "parents": [ "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" } ], "examples": [ { "ref": "2015, Shoichi Fujimori, Yu Kawakami, Masatoshi Kokubu, Wayne Rossman, Masaaki Umehara, Kotaro Yamada, “Analytic extension of Jorge-Meeks type maximal surfaces in Lorentz-Minkowski 3-space”, in arXiv:", "text": "The Jorge-Meeks n-noid (n#x5C;ge 2) is a complete minimal surface of genus zero with n catenoidal ends in the Euclidean 3-space #x5C;boldsymbol#x7B;R#x7D;³, which has (2#x5C;pi#x2F;n)-rotation symmetry with respect to its axis.", "type": "quote" } ], "glosses": [ "Relating to, or having the form of a catenoid" ], "id": "en-catenoidal-en-adj-Fb6BCJBo", "links": [ [ "mathematics", "mathematics" ], [ "catenoid", "catenoid" ] ], "raw_glosses": [ "(mathematics) Relating to, or having the form of a catenoid" ], "tags": [ "not-comparable" ], "topics": [ "mathematics", "sciences" ] } ], "word": "catenoidal" }
{ "etymology_templates": [ { "args": { "1": "en", "2": "catenoid", "3": "al" }, "expansion": "catenoid + -al", "name": "suffix" } ], "etymology_text": "From catenoid + -al.", "head_templates": [ { "args": { "1": "-" }, "expansion": "catenoidal (not comparable)", "name": "en-adj" } ], "lang": "English", "lang_code": "en", "pos": "adj", "senses": [ { "categories": [ "English adjectives", "English entries with incorrect language header", "English lemmas", "English terms suffixed with -al", "English terms with quotations", "English uncomparable adjectives", "Pages with 1 entry", "Pages with entries", "en:Mathematics" ], "examples": [ { "ref": "2015, Shoichi Fujimori, Yu Kawakami, Masatoshi Kokubu, Wayne Rossman, Masaaki Umehara, Kotaro Yamada, “Analytic extension of Jorge-Meeks type maximal surfaces in Lorentz-Minkowski 3-space”, in arXiv:", "text": "The Jorge-Meeks n-noid (n#x5C;ge 2) is a complete minimal surface of genus zero with n catenoidal ends in the Euclidean 3-space #x5C;boldsymbol#x7B;R#x7D;³, which has (2#x5C;pi#x2F;n)-rotation symmetry with respect to its axis.", "type": "quote" } ], "glosses": [ "Relating to, or having the form of a catenoid" ], "links": [ [ "mathematics", "mathematics" ], [ "catenoid", "catenoid" ] ], "raw_glosses": [ "(mathematics) Relating to, or having the form of a catenoid" ], "tags": [ "not-comparable" ], "topics": [ "mathematics", "sciences" ] } ], "word": "catenoidal" }
Download raw JSONL data for catenoidal meaning in All languages combined (1.4kB)
This page is a part of the kaikki.org machine-readable All languages combined dictionary. This dictionary is based on structured data extracted on 2024-12-01 from the enwiktionary dump dated 2024-11-21 using wiktextract (95d2be1 and 64224ec). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.