See binarization on Wiktionary
{ "derived": [ { "_dis1": "0 0 0", "word": "rebinarization" } ], "etymology_templates": [ { "args": { "1": "en", "2": "binary", "3": "ization" }, "expansion": "binary + -ization", "name": "suffix" } ], "etymology_text": "From binary + -ization.", "forms": [ { "form": "binarizations", "tags": [ "plural" ] } ], "head_templates": [ { "args": { "1": "~" }, "expansion": "binarization (countable and uncountable, plural binarizations)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "related": [ { "_dis1": "0 0 0", "word": "dichotomization" }, { "_dis1": "0 0 0", "word": "discretization" }, { "_dis1": "0 0 0", "word": "quantization" } ], "senses": [ { "glosses": [ "Conversion of a picture to only black and white." ], "id": "en-binarization-en-noun-8nNXcOmw", "links": [ [ "Conversion", "conversion" ], [ "picture", "picture" ], [ "black", "black" ], [ "white", "white" ] ], "tags": [ "countable", "uncountable" ] }, { "categories": [ { "kind": "topical", "langcode": "en", "name": "Computing", "orig": "en:Computing", "parents": [ "Technology", "All topics", "Fundamental" ], "source": "w" } ], "glosses": [ "Conversion of a tree to one with at most two children per node." ], "id": "en-binarization-en-noun-idmLmhzZ", "links": [ [ "computing", "computing#Noun" ], [ "Conversion", "conversion" ], [ "tree", "tree" ], [ "child", "child" ], [ "node", "node" ] ], "raw_glosses": [ "(computing) Conversion of a tree to one with at most two children per node." ], "tags": [ "countable", "uncountable" ], "topics": [ "computing", "engineering", "mathematics", "natural-sciences", "physical-sciences", "sciences" ], "translations": [ { "_dis1": "5 63 32", "code": "pl", "lang": "Polish", "sense": "in computing", "tags": [ "feminine" ], "word": "binaryzacja" } ] }, { "categories": [ { "_dis": "3 22 74", "kind": "other", "name": "English entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w+disamb" }, { "_dis": "10 19 71", "kind": "other", "name": "English terms suffixed with -ization", "parents": [], "source": "w+disamb" }, { "_dis": "3 11 86", "kind": "other", "name": "Entries with translation boxes", "parents": [], "source": "w+disamb" }, { "_dis": "4 22 74", "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w+disamb" }, { "_dis": "4 19 77", "kind": "other", "name": "Pages with entries", "parents": [], "source": "w+disamb" }, { "_dis": "12 18 70", "kind": "other", "name": "Terms with Polish translations", "parents": [], "source": "w+disamb" }, { "_dis": "15 32 53", "kind": "topical", "langcode": "en", "name": "Two", "orig": "en:Two", "parents": [ "Numbers", "All topics", "Terms by semantic function", "Fundamental" ], "source": "w+disamb" } ], "glosses": [ "Conversion of a formal grammar to one where each rewriting rule has at most two nonterminals on its right-hand side." ], "id": "en-binarization-en-noun-qY7FOrtv", "links": [ [ "Conversion", "conversion" ], [ "grammar", "grammar" ], [ "nonterminals", "nonterminals" ] ], "tags": [ "countable", "uncountable" ] } ], "word": "binarization" }
{ "categories": [ "English countable nouns", "English entries with incorrect language header", "English lemmas", "English nouns", "English terms suffixed with -ization", "English uncountable nouns", "Entries with translation boxes", "Pages with 1 entry", "Pages with entries", "Terms with Polish translations", "en:Two" ], "derived": [ { "word": "rebinarization" } ], "etymology_templates": [ { "args": { "1": "en", "2": "binary", "3": "ization" }, "expansion": "binary + -ization", "name": "suffix" } ], "etymology_text": "From binary + -ization.", "forms": [ { "form": "binarizations", "tags": [ "plural" ] } ], "head_templates": [ { "args": { "1": "~" }, "expansion": "binarization (countable and uncountable, plural binarizations)", "name": "en-noun" } ], "lang": "English", "lang_code": "en", "pos": "noun", "related": [ { "word": "dichotomization" }, { "word": "discretization" }, { "word": "quantization" } ], "senses": [ { "glosses": [ "Conversion of a picture to only black and white." ], "links": [ [ "Conversion", "conversion" ], [ "picture", "picture" ], [ "black", "black" ], [ "white", "white" ] ], "tags": [ "countable", "uncountable" ] }, { "categories": [ "en:Computing" ], "glosses": [ "Conversion of a tree to one with at most two children per node." ], "links": [ [ "computing", "computing#Noun" ], [ "Conversion", "conversion" ], [ "tree", "tree" ], [ "child", "child" ], [ "node", "node" ] ], "raw_glosses": [ "(computing) Conversion of a tree to one with at most two children per node." ], "tags": [ "countable", "uncountable" ], "topics": [ "computing", "engineering", "mathematics", "natural-sciences", "physical-sciences", "sciences" ] }, { "glosses": [ "Conversion of a formal grammar to one where each rewriting rule has at most two nonterminals on its right-hand side." ], "links": [ [ "Conversion", "conversion" ], [ "grammar", "grammar" ], [ "nonterminals", "nonterminals" ] ], "tags": [ "countable", "uncountable" ] } ], "translations": [ { "code": "pl", "lang": "Polish", "sense": "in computing", "tags": [ "feminine" ], "word": "binaryzacja" } ], "word": "binarization" }
Download raw JSONL data for binarization meaning in All languages combined (2.0kB)
This page is a part of the kaikki.org machine-readable All languages combined dictionary. This dictionary is based on structured data extracted on 2025-01-13 from the enwiktionary dump dated 2025-01-01 using wiktextract (4ba5975 and 4ed51a5). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.